Journal of Chemical Physics, Vol.113, No.10, 4146-4152, 2000
Vacuum ultraviolet photochemistry of CH4 and isotopomers. II. Product channel fields and absorption spectra
In part I of this work the relative velocities and anisotropies of the atomic H and D fragments from methane photolysis at 10.2 eV were measured. In this paper the relative abundance of the methyl and methylene fragments are reported. A complete set of quantum yields for the different photodissociation channels of each isotopomer is obtained by combining the two sets of data. Previously it was found that H atoms are almost four times more likely than D atoms to be ejected; now it is found that hydrogen molecule photofragments are much richer in H atoms than in D. Overall, the heavier D atoms are more likely than the H atoms to remain attached to the carbon atom. An implication for astrophysics is discussed. The VUV absorption spectra of CH4 and CH3D are almost identical both at room temperature and 75 K. There is, as expected, no variation in the absorption spectrum with temperature. Evidence is given that all or almost all of the methylene is produced in the a (1)A(1) and not in the ground B-3(1) state.