화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.4, 476-485, July, 2001
히아루론산을 이용한 조직공학용 Scaffold의 제조와 약물 방출 거동에 관한 연구
Synthesis of Hyaluronic Acid Scaffold for Tissue Engineering and Evaluation of Its Drug Release Behaviors
E-mail:
초록
본 연구에서는 고분자 지지체를 만든 후 약물을 흡수시켜 방출 특성을 검토하는 기존의 방법에서 나타나는 초기 과다 방출이라는 단점을 보완하고 장기간에 걸친 약물방출이 가능한 고분자 지지체를 구축하기 위해 광반응 관능기를 갖는 히아루론산과 sodium alginate 유도체로 세포의 성장을 촉진하는 약물을 함입한 미립자를 만들고 이를 성형가공한 고분자 지지체를 제작하여 약물 방출 특성을 검토하였다. 이러한 방법으로 만들어진 지지체는 초기 방출이 억제되고 오랜 기간 동안 지속적으로 약물을 서서히 방출하였으며, 뿐만 아니라 천연고분자가 갖는 생체내 분해 특성으로 인하여 일정한 기간 동안 형태를 유지하며 지지체로 기능을 한 이후 분해되어 재생된 조직이 손상조직과 대체 가능하므로, 세포의 성장과 분화를 유도하는 손상조직 대체용 고분자 지지체 본연의 목적을 달성할 수 있을 것으로 기대된다.
In this study, we tried to design and synthesize using natural polymers (hyaluronic acid and sodium alginate) and also to make some kinds of scaffolds as sponge type for reducing the burst effect of loaded drug from them. Photo-dimerizable group was incorporated to hyaluronic acid and degradable hydrogel was prepared by the UV radiation of the polymer. The pore size and its distribution of scaffold were controlled by changing microsphere production conditions such as solution concentration and spraying pressure. It was found that drug release behavior from synthesized scaffolds was affected by hybridization of two naturally originated polymers (cinnamoylated tetrabutylammonium hyaluronate: CHT and cinnamolylated sodium alginate: CSA) and the obtained scaffolds were degraded in fairly long time (about 2 months) under in vitro environment. Therefore, we expect that obtained scaffolds can be applicable for the tissue regeneration scaffolds in the fields of orthopaedic surgery.
  1. Yaszemski M, Mikos A, J. Biomed. Mater. Res., 43(4), 422 (1998) 
  2. Pianigiani E, Andreassi L, Biomaterials, 20, 1689 (1999) 
  3. Peguin V, Robert L, Int. J. Biolog. Macromolecules, 22, 17 (1998) 
  4. Balazs E, Band P, Cosmetics Toiletries, 99, 65 (1984)
  5. Storey RF, Nelson ME, J. Appl. Polym. Sci., 66(1), 151 (1997) 
  6. Zeng C, Stamenkovic I, Int. J. Cancer, 77, 196 (1998) 
  7. Campoccia D, Williams D, Biomaterials, 19, 2101 (1998) 
  8. Pritchard K, Lansley AB, Martin GP, Int. J. Pharmaceutics, 129, 137 (1996) 
  9. Tomihata K, Ikada Y, Biomaterials, 18, 189 (1997) 
  10. Vercruysse KP, Marecak DM, Prestwich GD, Bioconjugate Chem., 8, 686 (1997) 
  11. Abatangelo G, Babucci R, Lamponi S, Biomaterials, 18, 1411 (1997) 
  12. Shindo Y, Sugimura T, Mita I, Polym. J., 22(1), 63 (1990) 
  13. Chung CP, Lee SJ, J. Biomed. Mater. Res., 51(3), 391 (2000) 
  14. Biron R, Sargeant C, J. Pharm., 185(1), 51 (1999)
  15. Walton DE, Mumford CJ, IChemE, 77(PartA), 21 (1999)
  16. Watanabe H, Yamada Y, Kimata K, J. Biochem., 124, 687 (1998)
  17. Broom N, Oloyede A, Biomaterials, 19, 1179 (1998) 
  18. Langer R, Unjaknovakovic G, Expertimental Cell Research, 240(1), 58 (1998) 
  19. Abatangelo G, Guidolin D, Cortivo R, J. Biomed. Mater. Res., 46(3), 337 (1999) 
  20. Valle Francesco D, Aurelio R, U.S. Patent, 4,851,521 (1989)
  21. Doyle J, Roth T, Smith R, Li YQ, Dunn R, J. Biomed. Mater. Res., 32(4), 561 (1996) 
  22. Lee KY, Park WH, Ha WS, J. Appl. Polym. Sci., 63(4), 425 (1997) 
  23. Loty S, Sautier J, Loty C, Boulekbache H, Kokubo T, Forest N, J. Biomed. Mater. Res., 42(2), 213 (1998) 
  24. Suzuki Y, Nishimura Y, Kakimaru Y, J. Biomed. Mater. Res., 39(2), 317 (1998) 
  25. Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S, Biotechnol. Bioeng., 67(3), 344 (2000) 
  26. Murase S, Kinoshita K, Horie K, Morino S, Macromolecules, 30(25), 8088 (1997) 
  27. Gugala Z, Gogolewski S, J. Biomed. Mater. Res., 49(2), 183 (2000) 
  28. Brun P, Abatangelo G, Radice M, Zacchi V, Guidolin D, Cortivo R, J. Biomed. Mater. Res., 46(3), 337 (1999) 
  29. Hari PR, Chandy T, Sharma CP, J. Appl. Polym. Sci., 59(11), 1795 (1996) 
  30. Kamboj RC, Raghav N, Nandal A, Singh H, J. Chem. Technol. Biotechnol., 65(2), 149 (1996) 
  31. Galban CJ, Locke BR, Biotechnol. Bioeng., 65(2), 121 (1999)