화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.4, 575-586, July, 2001
안정화 PAN 섬유로부터 준탄소섬유의 제조 및 물성
Preparation and Properties of Quasi-Carbon Fibers from Stabilized PAN Fibers
E-mail:
초록
안정화 폴리아크릴로니트릴(PAN) 섬유는 탄소섬유 제조에서 요구되는 온도보다 낮은 조건에서 여러 가지 열처리공정 인자에 따라 다른 물성을 갖는 준탄소섬유로 변환될 수 있다. 최근의 초기연구 결과에 의하면 약 1100℃ 부근에서 적절한 준탄화공정은 준탄소섬유의 물성과 준탄소섬유/고분자 복합재료의 물성에 매우 중요하게 작용하는 것으로 조사되었다. 따라서, 본 연구의 목적은 안정화 PAN 섬유를 이용하여 여러 준탄화공정을 통해 준탄소섬유를 제조하고 그 물성을 조사하는 것이다. 준탄소공정은 800℃까지의 저온영역과 1000℃이상의 고온영역으로 나누어 행하였으며, 최종 준탄화온도, 승온속도, 체류시간, 승온단계, 분위기가스 등을 변화시켜가며 얻어진 준탄소섬유에 대한 화학조성, 물리적 특성, 열안정성, 미세구조, 기계적 특성 및 전기저항성을 조사하였다. 각 조건에서 얻어진 준탄소섬유에 대한 결과는 열처리전 안정화 PAN 섬유와 상업용 PAN계 탄소섬유의 물성과 비교 분석하였다. 본 연구의 결과는 조사된 물성이 주어진 여러 가지 준탄화공정 인자에 크게 의존하였음을 보여주었다.
Stabilized polyacrylonitrile (PAN) fibers can be transformed into quasi-carbon fibers with different properties depending on heat-treatment processing parameters at lower temperatures than temperature for the fabrication of carbon fibers. It has been investigated from the preliminary work that appropriate quasi-carbonization processes at about 1100℃ strongly influence various properties of quasi-carbon fiber/polymer composite as well as quasi-carbon fiber itself. The objective of the present work is to prepare quasi-carbon fibers from stabilized PAN fibers using various quasi-carbonization cycles and to examine their properties. Two temperature regions, up to 800℃ and above 1000℃, were used for quasi-carbonization processes. The chemical composition, physical properties, thermal stability, microstructure, mechanical properties and electrical resistivity of the quasi-carbon fibers prepared with different final heat-treatment temperatures, heating rates, holding times, heating steps, and purging gas purity were extensively examined. The results were also compared with those from stabilized PAN fiber and commercial PAN-based carbon fiber. The present study showed that a variety of properties of quasi-carbon fibers significantly depended on several quasi-carbonization process parameters.
  1. Donnet JB, Wang TK, Peng JCM, Rebouillat S, "Carbon Fibers", 3rd Ed., chapter 1, Marcel Dekker, Inc., New York (1998)
  2. Bahl OP, Manocha LM, Carbon, 12, 417 (1974) 
  3. Markovic V, Marsh H, Carbon, 19, 9 (1981)
  4. Ko TH, Ting HY, Lin CH, J. Appl. Polym. Sci., 35, 863 (1988) 
  5. Lee JY, Cho DH, Kim DG, Park IS, Ha HS, Yoon BI, Polym.(Korea), 17(1), 59 (1993)
  6. Gupta AK, Paliwal DK, Bajaj P, Macromol. Chem. Phys., C31(1), 1 (1991)
  7. Markovic V, Marinkovic S, Carbon, 18, 329 (1980) 
  8. Ko TH, Hone KW, Polym. Compos., 14, 247 (1993) 
  9. Cho D, Ahn YS, Lee JY, Polym.(Korea), 20(6), 1024 (1996)
  10. Cho D, cho Y, Park JK, Lee JY, Polym. Sci. Technol., 11(6), 717 (2000)
  11. Zhao LR, Jang BZ, J. Mater. Sci., 30(18), 4535 (1995) 
  12. Ko TH, Hone KW, SAMPLE J., 28, 17 (1992)
  13. Zhao LR, Jang BZ, J. Mater. Sci., 32(11), 2811 (1997) 
  14. Pan G, Muto N, Miyayama M, Yanagida H, J. Mater. Sci., 27, 3497 (1992) 
  15. Schmidt DL, Craig RD, Air Force Wright Aeronautical Laboratories Technical Report, AFWAL-TR-81-4136, 1 (1982)
  16. ASTM D3379-75
  17. Chung DDL, "Carbon Fiber Composites", chapter 6, Butterworth-Heinemann, Boston (1994)
  18. Yoon BI, Cho D, Ha HS, Lee JY, Park IS, Kim DG, Research Report, MRDD-411-91622, Agency for Defense Development, Part IV, p 142 (1991)
  19. Peebles LH, "Carbon Fibers: Formation, Structure, and Properties", chapter 6, CRC Press, Boca Raton (1995)
  20. Thomas CR, "Essentials of Carbon-Carbon Composites", chapter 1, The Royal Society of Chemistry, Cambridge (1993)
  21. Runnacles J, Tangen M, Walker T, Material Technology Center 8th Annual Conference, SIU at Carbondale, p. 33 (1992)