화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.4, 587-593, July, 2001
Red Mud의 산처리에 의한 에폭시/Red Mud 나노복합재료의 계면 결합력 향상
Enhancement of Interfacial Adhesion of Epoxy/Red Mud Nanocomposites Produced by Acidic Surface Treatment on Red Mud
E-mail:
초록
본 연구에서는 red mud(RM)를 0.1, 1, 그리고 5M 의 H3PO4 용액으로 화학적 표면처리하여 에폭시/RM 나노복합재료를 제조하였으며, RM 표면의 pH, 표면 산-염기도, 표면적, 그리고 기공도를 이용하여 표면처리에 의한 영향을 분석하였다. 또한, 임계응력 세기인자(K(IC))를 통하여 제조된 복합재료의 기계적 계면물성을 조사하였다. 실험결과로부터, 표면처리에 의한 RM의 표면은 hydroxyl 등의 산성관능기 그룹의 생성과 금속산화물의 반응으로 인하여 표면 산도가 증가하고, 미세기공 및 중기공 구조가 발달하여 비표면적이 증가되었다. K(IC)를 이용한 RM의 기계적 계면성질은 비표면적이 증가함과 동시에 표면산도가 증가함으로 염기성 매트릭스와의 계면결합력이 증대되어 순수 에폭시와 처리되지 않은 에폭시/RM 복합재료보다 더 우수한 기계적 계면물성을 나타내었다.
In this work, red mud (RM) was chemically modified by 0.1, 1, and 5 M H3PO4 solution to prepare epoxy/RM nanocomposites. The effect of chemical treatment on pH, acid-base values, specific surface area, and porosity of RM surface was analyzed. To estimate the mechanical interfacial properties of epoxy/RM nanocomposites, the critical stress intensity factor ((K(ic)) was measured. From the experimental results, it was clearly revealed that the porosity, specific surface area, and acid values of RM surface were developed as the increase of the treatment concentration due to the increase of acidic functional group, including hydroxyl group on RM surface. The mechanical interfacial properties of epoxy/treated-RM nanocomposites were higher than those of epoxy/RM as-received due to an improvement of interfacial bonding between basic matrix and RM surface.
  1. Sglavo VM, Campostrini R, Maurina S, Carturan G, Monagheddu M, Budroni G, Cocco G, J. Eur. Ceram. Soc., 20, 235 (2000) 
  2. Pradhan J, Das SN, Thakur RS, J. Colloid Interface Sci., 217(1), 137 (1999) 
  3. Griotheim K, Welch BJ, "Aluminium Smelter Technology", 2nd ed., p. 24, Verlag, Berlin (1983)
  4. Apak R, Guclu K, Turgut MH, J. Colloid Interface Sci., 203(1), 122 (1998) 
  5. Atun G, Hisarli G, J. Colloid Interface Sci., 228(1), 40 (2000) 
  6. Pradhan J, Das J, Das S, Thakur RS, J. Colloid Interface Sci., 204(1), 169 (1998) 
  7. Singh B, Gupta M, Verma A, Constru. Building Mater., 9, 39 (1995) 
  8. Chand N, Hashmi SAR, J. Sci. Ind. Res., 58, 795 (1999)
  9. Hashmi SA, Majumdar AK, Chand N, J. Mater. Sci. Lett., 15(15), 1343 (1996)
  10. Gent AN, Wang C, J. Polym. Sci. B: Polym. Phys., 34(13), 2231 (1996) 
  11. Park SJ, Kim MH, J. Mater. Sci., 35(8), 1901 (2000) 
  12. Bauer RS, "Epoxy Resin Chemistry", Advances in Chemistry Series, No. 114, American Chemical Society, Washington DC (1979)
  13. Lee H, Nevile K, "Handbook of Epoxy Resins", McGraw-Hill, New York (1986)
  14. May CA, "Epoxy Resins, Chemistry & Technology", p. 551, Marcel Dekker, New York (1988)
  15. Boehm HP, Adv. Catal., 16, 197 (1996)
  16. Zhang MQ, Yu G, Zeng HM, Zhang HB, Hen YH, Macromolecules, 31(19), 6724 (1998) 
  17. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  18. Kornmann X, Lindberg H, Berglund LA, Polymer, 42(4), 1303 (2001) 
  19. Gregg SJ, Sing KSW, "Adsorption, Surface Area and Porosity", Academic Press, London (1982)
  20. Ruthven DM, "Principles of Adsorption and Adsorption process", chap. 8, John Wiley, New York (1984)
  21. Lippens BC, de Boer JH, J. Catal., 4, 319 (1965) 
  22. Sing KSW, J. Colloid Surface, 38, 113 (1989) 
  23. Kasliwal P, Sai PST, Hydrometallurgy, 53, 73 (1999) 
  24. Wu S, "Polymer Blends", eds. by D.R. Paul and S. Newman, vol. I, p. 243, Academic Press, New York (1978)
  25. Park SJ, Cho MS, J. Mater. Sci., 35(14), 3525 (2000) 
  26. Park SJ, Seo MK, Lee JR, J. Polym. Sci. A: Polym. Chem., 38(16), 2945 (2000) 
  27. Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29 (1998)