화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.3, 348-351, May, 2001
Poly(3-octylthiophene-co-3-(4-fluorophenyl)thiophene)의 합성과 적색 유기 발광 물질로서의 전기광학적 특성에 관한 연구
Studies on the Synthesis of Poly(3-octhlthiophene-co-3-(4-fluorophenyl)thiophene)and Its Opto-electrical Characteristics as a Red Emitting Material
E-mail:
초록
3-Octylthiophene과 3-(4-fluorophenyl)thiophene을 공중합하여 발광 효율과 색순도가 우수한 유기 전기 발광 고분자를 개발하였다. 공중합한 고분자의 전기·광학적 특성을 Photoluminescence(PL), Electroluminescence(EL) 스펙트럼과 유기 전기 발광 소자의 I-V, V-L 곡선을 이용하여 조사하였다. poly(3-octylthiophene-co-3-(4-fluorophenyl)thiophene) (2:1)[P(OT/FPT) (2:1)]의 PL 필름 스펙트럼에서 최대 발광 파장 (651 nm)이 용액의 그것에 비하여 21 nm 만큼 적색 이동하였는데, 그 크기가 poly(3-octylthiophene) (POT)에 비해 12 nm 정도 적게 일어났다. 이는 p(OT/FPT) (2:1)에서 excimer complex의 영향이 적음을 의미한다. Polythiophene의 우수한 정공 전달 능력과 4-fluorophenyl 기의 전자 끌기에 의해 전자 주입이 용이해져 P(OT/FPT) (2:1)의 구동 전압이 6 V로 낮아지고 색순도가 개선되었으며 발광 세기가 증가된 것으로 믿어진다.
In an attempt to improve the Electroluminescence(EL) efficiency of an organic polymer, a copolymer of 3-octylthiophene and 3-(4-flurophenyl)thiophene was synthesized. The electrical and optical characteristics of the copolymer was investigated by measuring the Photolumine-scence(PL) and EL spectra as well as the I-V-L curves. The λ(max) (651 nm) in the PL spectrum of poly(3-octylthiophene-co-3-(4-fluorophenyl)thiophene) (2:1)[P(OT/FPT) (2:1)] film was red-chifted by 21 nm compared with that of the solution in chloroform which is smaller by 12 nm than the red-shift in poly(3-octylthiophene) (POT). This indicates that the excimer formation is less prominent in P(OT/FPT) (2:1) than in POT. It is believed that the color purity was improved due to the high hole transport capability of polythiophene and the electron withdrawing characteristics of 4-fluorophenyl group. This leads to the efficient injection of electrons and eventually to the lower operating voltage, i.e 6 V, and improvement of the intensity of the EL device using P(OT/FPT) (2:1).
  1. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burn PL, Holmes AB, Nature, 347, 539 (1990) 
  2. Brown AR, Bradley DDC, Burroughes JH, Friend RH, Greenham NC, Burn PL, Holmes AB, Kraft A, Appl. Phys. Lett., 61(23), 2793 (1992) 
  3. Greenham NC, Moratti SC, Bradley DDC, Friend RH, Holmes AB, Nature, 365, 628 (1993) 
  4. Roncali J, Chem. Rev., 92, 711 (1992) 
  5. Grem G, Leditzky G, Ullich B, Leising G, Adv. Mater., 4, 36 (1992) 
  6. Wudl F, Hoger S, Zhang C, Pakbaz K, Heeger AJ, Polym. Prep., 34, 197 (1993)
  7. Parker ID, J. Appl. Phys., 75, 1656 (1994) 
  8. Berggren M, Inganas O, Gustafsson G, Rasmusson J, Andersson MR, Hjertberg T, Wennerstrom O, Nature, 372(6505), 444 (1994) 
  9. Laakso J, Osterhalm JE, Nyholm P, Synth. Met., 37, 145 (1990) 
  10. Greenham NC, Brown AR, Bradley DDC, Friend RH, Synth. Met., 55, 4134 (1993)
  11. McCullough RD, Jayaraman M, J. Chem. Soc.-Chem. Commun., 135 (1995)
  12. Hamaguchi M, Yoshino K, Appl. Phys. Lett., 69(2), 143 (1996) 
  13. Tamao K, Kodama S, Nakajima I, Kumada M, Tetrahedron, 18(22), 1147 (1982)
  14. Andersson MR, Selse D, Berggren M, Jarvinen H, Hjertberg T, Inganas O, Wennerstrom O, Osterholm JE, Macromolecules, 27(22), 6503 (1994) 
  15. Barta P, Sanetra J, Zagorska M, Synth. Met., 94, 119 (1998) 
  16. Mao H, Xu B, Holdcroft S, Macromolecules, 26, 1163 (1993) 
  17. Aasmundtveit KE, Samuelsen EJ, Mammo W, Svensson M, Andersson MR, Pettersson LAA, Inganas O, Macromolecules, 33(15), 5481 (2000)