Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.4, 394-402, June, 2001
무연탄의 비연료 활용 : 활성탄의 제조와 흡착 특성 연구
Non-Fuel Use of Anthracite : Preparation of Activated carbons and ADsorption Chractieristics
E-mail:
초록
국내 무연탄의 비연료 활용을 위해 무연탄을 원료로 흡착제를 제조하는 것을 목적으로 하고 있다. 활성탄 원료를 제조하기 위해 중액선탄 방법으로 저회분탄을 제조하였다. 파쇄탄과 조립탄을 원료로 스팀 또는 CO2로 활성화하여 활성탄을 제조하였다. 무연탄에 활성화를 위한 반응성을 부여하기 위해서 알칼리(Na, K)로 전처리하여 영향을 고찰하였다. 활성탄의 액상 및 기상 흡착 성능 시험을 위해 유기 물질과 중금속 시험을 수행하였다. 활성화 결과 파쇄원탄과 조립탄으로 제조된 활성탄의 비표면적은 각각 650m(2)/g과 920m(2)/g이었다. 파쇄원탄을 화학적으로 처리한 결과 비표면적이 650m(2)/g에서 840m(2)/g으로 증가하였으며 기공 부피와 burn-off을 증가시키는 효과를 보였다. 화학적으로 처리된 파쇄활성탄과 CO2로 활성화된 조립 활성탄은 미세 기공이 발달하여 기상용에 적합하였으며 스팀으로 활성화된 조립 활성탄은 다양한 크기의 기공이 발달하여 액상용으로 적합하였다.
Purpose of this study was to develope the activated carbons from domestic anthracite. The low ash coals were separated by a dense media technique, before the activation. The activated carbons were produced using either steam or CO2 for crushed and granulated coals. Chemical pre-treatment with alkali hydroxides (Na, K) was to increase the reactivity of anthracite during the activation. Liquid and gas phase adsorption tests were performed with organic compounds and heavy metals. Activated carbons having the surface areas of 650 m(2)/g and 920 m(2)/g were produced from crushed and granulate coals, respectively. The chemical pre-treatment of the crushed coals increased the surface area from 650 m(2)/g to 840 m(2)/g as well as increasing the pore size and burn-offs. It was found that the activated carbons produced from the crushed coals with the chemical pre-treatment and CO2 activation had a well-developed microporosity characteristic. The activated carbons that formed by steam activation of the graunles, however, had a wide-range of porosity. The crushed and franulated activated carbons are particularly suitable for gas phase and liquid phase adsorptions, respectively.
- Patel RL, Nandi SP, Walker PL, Fuel, 51, 47 (1972)
- Mittelmijer-Hazeleger MC, Martin-Martinez JM, Carbon, 30, 695 (1992)
- Martin-Martinez JM, Torregrosa-Macia R, Mittelmijer-Hazeleger MC, Fuel, 74, 111 (1995)
- Gergova K, Eser S, Schobert HH, Klimkiewicz M, Brown PW, Fuel, 74, 1042 (1995)
- Gergova K, Eser S, Schobert HH, Energy Fuels, 7, 661 (1993)
- Serranotalavera B, Munozguillena MJ, Linaressolano A, Delecea CS, Energy Fuels, 11(4), 785 (1997)
- Illangomez MJ, Garciagarcia A, Delecea CS, Linaressolano A, Energy Fuels, 10(5), 1108 (1996)
- Daulan C, Lyubchik SB, Rouzaud JN, Beguin F, Fuel, 77(6), 495 (1998)
- Lyubchik SB, Benaddi H, Sharpranov VV, Beguin F, Carbon, 35, 162 (1997)
- Parra JB, De Sousa JC, Pis JJ, Pajares JA, Bansal RC, Carbon, 6, 801 (1995)
- Walker PL, Almagro A, Carbon, 33, 239 (1995)
- Razvigorova M, Budinova T, Petrov N, Minkova V, Water Res., 32, 2135 (1998)
- Bessant GAR, Walker PL, Carbon, 32, 1171 (1994)
- Hong SH, Shin WK, Nam YW, J. Korean Soc. Environ. Eng., 20, 1 (1998)
- Kim H, Park HC, Moon H, HWAHAK KONGHAK, 33(6), 764 (1995)
- Lee SH, Shon EK, Fuel, 76, 241 (1997)
- Lee SH, Choi CS, Fuel Process. Technol., 64(1), 141 (2000)
- Lee SH, Lee CD, Korean J. Chem. Eng., 18(1), 26 (2001)