화학공학소재연구정보센터
Journal of Membrane Science, Vol.189, No.2, 151-165, 2001
Prediction of dynamic permeate flux during cross-flow ultrafiltration of polyethylene glycol using concentration polarization-gel layer model
A tubular ultrafiltration model which couples the formation of a cake layer on the membrane surface and the presence of a polarized layer above the cake has been developed, which contains a single constant and the cake layer resistance to be evaluated from experiments. In the model, the tangential flow of feed material is assumed to induce a shearing effect on the cake layer resulting in the re-entrainment the particles into the bulk stream. The validity of the model over a range of cross-flow velocity, transmembrane pressure (TMP) and solute concentration was confirmed using experimental permeate fluxes obtained from the ultrafiltration of polyethylene glycol. Excellent prediction is observed for solute concentrations above some critical value at which a well developed cake layer is believed to have been formed. For concentrations below this value, the model under predicted the steady-state permeate fluxes. By ignoring the presence of the polarized layer, the model always over predict the dynamic fluxes.