Journal of Materials Science, Vol.36, No.11, 2615-2619, 2001
Microstructure and properties of ceramic coatings produced on 2024 aluminum alloy by microarc oxidation
The microstructures of the microarc oxidation coatings and 2024 aluminum alloy substrate were observed using the scanning electron microscope (SEM) and the phase composition of the coatings was analyzed by X-ray diffraction (XRD). Furthermore, the profiles of the nanohardness, H, and elastic modulus, E, along the coating depth were first determined using the mechanical properties microprobe. The microarc oxidation coatings consist of two layers-a loose layer and a compact layer. The H and E in the compact layer are about 18-32 GPa, 280-390 GPa, respectively. The H and E profiles are similar, and both of them exhibit a maximum value at a same depth of the coatings. The distribution of alpha -Al2O3 phase content determines the H and E profiles in the coatings. The changes of alpha -Al2O3 and gamma -Al2O3 contents result from the different cooling rates of the molten alumina in the microarc discharge channel at the different depths of the coatings. After the microarc oxidation treatment, the microstructure of the alloy substrate, even near the Al/Al2O3 interface, has not been changed.