화학공학소재연구정보센터
Journal of Materials Science, Vol.36, No.14, 3579-3587, 2001
A theoretical approach for the thermal expansion behavior of the particulate reinforced aluminum matrix composite - Part I -A thermal expansion model for composites with mono-dispersed spherical particles
Microstructural observation revealed that the increase in the volume fraction of SiC particles lowers the coefficient of thermal expansion (CTE) of the composite, and the CTE of the metal matrix composites is proportional to the size of the Si phase. To analyze the thermal expansion behavior of aluminum matrix composites, a new model for the CTE of the mono-dispersed binary composite on the basis of Ashelby's cutting and welding approach was proposed. In the theoretical model, it was considered that during cooling relaxation of residual stresses could create an elasto-plastic deformation zone around a SiC or Al2O3 particle in the matrix. The size of reinforced particles and other metallurgical factors of the matrix alloy and composite were also considered. In this model, the interacting effect between the reinforced hard particle and the soft matrix is considered by introducing the influence of the elasto-plastic deformation zone around a particle, which is distinguished from the previous models. It was revealed that the CTE of the composite are influenced by the particle volume fraction, the elastic modulus and Poisson's ratio as well as the elasto-plastic deformation zone size and the particle size.