Journal of Applied Polymer Science, Vol.79, No.4, 719-732, 2001
Physicochemical characterization of lignins from rice straw by hydrogen peroxide treatment
Extraction of the dewaxed rice straw with 1% NaOH at 55 degreesC for 2 h and following treatment without and with 0.5, 1.0, 2.0, 3.0, 4.0, and 5.0% hydrogen peroxide (H2O2) at 45 degreesC for 12 h at pH 11.5 resulted in a dissolution of 68.3, 85.4, 89.4, 92.3, 92.3, 94.3, and 95.1% of the original lignin, respectively. Meanwhile, the two-stage treatment together solubilized 67.2, 77.2, 78.7, 83.7, 85.5, 87.3, and 88.5% of the original hemicelluloses and degraded 2.5, 9.8, 11.8, 12.1, 15.6, 16.4, and 17.8% of the original cellulose under the conditions given, respectively. Analyses of these lignins revealed that alkali-soluble lignin fractions did not suffer sever oxidation, but nearly 60% of the original lignin was dissolved out during the first stage of alkali treatment. In the second stage of alkaline peroxide treatment, the residual lignins were substantially released and enriched in oxidized carbonyl and carboxyl groups. In comparison, the isolated eight pure lignin samples were further characterized by both destructive methods such as alkaline nitrobenzene oxidation and nondestructive techniques such as ultraviolet (UV), Fourier transform infrared (FTIR), and carbon-is magnetic resonance spectroscopy (C-13-NMR) as well as gel permeation chromatography (GPC), and the results are reported.