화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.38, No.17, 3173-3180, 2000
Synthesis of conjugated polymers containing anthracene moiety and their electro-optical properties
Both fully conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phe- nylene vinylene-alt-9,10-anthrylene vinylene] [poly(MEHPV-AV)] and conjugated/non-conjugated block copolymers poly(alkanedioxy-2-methoxy-1,4-phenylene-1,2-ethe-nylene-9, 10-anthrylene- 1,2-ehthenylene-3-methoxy-1,4-phenylene) [poly(BFMPx-AV), (x = 4, 8, and 12)] were synthesized by Horner-Emmons reaction utilizing potassium tert-butoxide. Of these synthesized polymers poly(BFMP4-AV) and poly(BFMP8-AV), which has four and six methylene groups as solubility spacer in the main chain exhibited liquid crystalline to isotropic transition in addition to the two first order transitions. Light-emitting diode (LED)s made from the organic solvent soluble poly(BFMP12-AV) as emitting layer showed blue shift in the emission spectrum compared to the one made from fully conjugated poly(MEHPV-AV). Although poly(BFMP12-AV) had higher barrier to the electron injection from cathode than poly(MEHPV-AV), the luminance efficiency of LED made from poly(BFMP12-AV) was about 25 times higher than the one made from poly(MEHPV-AV), which had fully conjugated structure. LEDs fabricated by both poly(BFMP12-AV) and poly(MEHPV-AV) exhibited Stoke's shift in the range of 155 to 168 nm from the absorption maximum due to the excimer formation between the ground and excited state anthracene groups.