화학공학소재연구정보센터
Journal of Polymer Science Part A: Polymer Chemistry, Vol.39, No.10, 1634-1645, 2001
Polymerization of styrene with ionic comonomer, nonionic comonomer, or both
Nanosized polystyrene latexes with high polymer contents were obtained from an emulsifier-free process by the polymerization of styrene with ionic comonomer, nonionic comonomer, or both. After seeding particles were generated in an initial emulsion system consisting of styrene, water, an ionic comonomer [sodium styrenesulfonate (NaSS)] or nonionic comonomer [2-hydroxyethyl methacrylate (HEMA)], and potassium persulfate, most of the styrene monomer or a mixture of styrene and HEMA was added dropwise to the polymerizing emulsion over 6 h. Stable latexes with high polystyrene contents (less than or equal to 25%) were obtained. The latex particle weight-average diameters were largely reduced (41 nm) by the continuous addition of monomer(s) compared with those (117 nm) obtained by the one-pot polymerization method. Latex particles varied from about 30 to 250 nm in diameters, whereas their molar masses were within 10(4) to 10(5) g/mol. The effect of the comonomer concentration on the number of polystyrene particles per milliliter of latex and the weight-average molar masses of the copolymers during the polymerization are discussed. The surface compositions of the latex particles were analyzed by X-ray photoelectron spectroscopy, which indicated that the surface of the latex particles was significantly enriched in NaSS, HEMA, or both.