Journal of Polymer Science Part B: Polymer Physics, Vol.38, No.23, 3168-3180, 2000
High-pressure rheology of polystyrene melts plasticized with CO2: Experimental measurement and predictive scaling relationships
A high-pressure extrusion slit die rheometer was constructed to measure the viscosity of polymer melts plasticized by liquid and supercritical CO2. A novel gas injection system was devised to accurately meter the follow of CO2 into the extruder barrel. Measurements of pressure drop, within the die, confirm the presence of a one-phase mixture and a fully developed flow during viscosity measurements. Experimental measurements of viscosity as a function of shear rate, pressure, temperature, and CO2 concentration were conducted for three commercial polystyrene melts. The CO2 was shown to be an effective plasticizer for polystyrene, lowering the viscosity of the polymer melt by as much as 80%, depending of the process conditions and CO2 concentration. Existing theories for viscoelastic scaling of polymer melts and the prediction of T-g depression by a diluent were used to develop a free volume model for predicting the effects of CO2 concentration and pressure on polymer melt rheology. The free volume model, dependent only on material parameters of the polymer melt and pure CO2, was shown to accurately collapse the experimental data onto a single master curve independent of pressure and CO2 concentration for each of the three polystyrene samples. This model constitutes a simple predictive set of equations to quantify the effects of gas-induced plasticization on molten polymer systems.