Polymer(Korea), Vol.25, No.5, 649-656, September, 2001
폴리(4-비닐피리딘)/비닐아세테이트-비닐알코올 공중합체 블렌드 : 2. 상 거동
Poly(4-vinylpyridine)/Vinyl Acetate-Vinyl Alcohol Copolymer Blends : 2. Phase Bahavior
E-mail:
초록
비닐아세테이트-비닐알코올(VA(c)-VAL) 공중합체의 조성에 따른 폴리(4-비닐피리딘)(P4VP)/VA(c)-VAL 공중합체 블렌드의 상용성을 조사하였다. 블렌드 시료의 시차 주사 열분석 (DSC) 및 광학현미경에 의한 상분리온도 조사 (TOM)를 통하여 P4VP는 VAL의 조성이 30 mole% 이상 함유된 VA(c)-VAL 공중합체들과 상용성이 있음이 확인되었다. 상용성 P4VP/VA(c)-VAL 공중합체 블렌드의 푸리에 변환 적외선 (FT-IR) 분광 분석 결과 비닐피리딘과 비닐알코올 히드록실기 사이에 강한 분자간 수소 결합이 형성됨을 확인하였다. 성분 고분자 사이에 분자간 수소결합에 의해서 고분자 블렌드의 상용성이 유도되는 고분자 블렌드계의 열역학적 모델인 Association 모델을 이용하여 P4VP/VA(c)VAL 공중합체 블렌드의 이론적인 상 그림을 구하였다. 이론적으로 계산된 binodal 곡선은 실험적으로 구한 흐림점 생성 곡선과 잘 일치하는 결과를 보였다.
Miscibility of poly(4-vinylpyridine)(P4VP) blends with poly(vinyl acetate-co-vinyl alcohol)(VAc-VALcopolymers) was investigated as a function of comonomer composition of VAc-VAL copolymers. Differential scanning calorimetry (DSC) and thermo-optical microscopic (TOM) analysis confirmed that P4VP is miscible with VAc-VAL copolymers containing more than 30 mole% VAL. Fourier transform infrared (FT-IR) spectroscopic analysis revealed that the strong intermolecular hydrogen bonding interaction between the vinylpyridine and VAL hydroxyl group was formed. Theoretical phase diagram was constructed by the calculation using the Association model, a thermodynamic model for hydrogen-bonded polymer blend systems developed by coleman at al. The calculated theoretical binodal phase diagrams were in good agreement with the experimentally determined cloud point curves.
Keywords:miscibility;poly(4-uinylpyridine);poly(uinyl acetate-co-uinyl alcohol);intermolecular hydrogen bonding interaction;Association model;binodal phase diagrams;cloud point curves
- Pearce EM, Kwei TK, Min BY, J. Macromol. Sci.-Chem., A21, 1181 (1984)
- Lee JY, Painter PC, Coleman MM, Macromolecules, 21, 346 (1988)
- Coleman MM, Graf J, Painter PC, "Specific Interactions and the Miscibility of Polymer Blends", Technomic Publishing, Ind., Lancaster, PA (1991)
- Zhou ZL, Eisenberg, J. Polym. Sci. Polym. Phys. Ed., 21, 595 (1983)
- Rutkowska M, Eisenberg A, Macromolecules, 17, 821 (1984)
- Prud'homme RE, Polym. Eng. Sci., 22, 90 (1982)
- Belogey G, Aubin M, Prud'homme RE, Polymer, 23, 1051 (1982)
- Register RA, Sen A, Weiss RA, Cooper S, J. Polym. Sci. Polym. Phys. Ed., 27, 1911 (1989)
- Agarwal PK, Duvdevani I, Peiffer DG, Lunberg RD, J. Polym. Sci. Polym. Phys. Ed., 25, 839 (1987)
- Kambour RP, Bendler JT, Boop RC, Macromolecules, 16, 753 (1983)
- ten Brinke, Karasz FE, MacKnight WJ, Macromolecules, 16, 1827 (1983)
- Paul DR, Barlow JW, Polymer, 25, 487 (1984)
- Lee JY, Lee H, Choi DH, Polym.(Korea), 22(3), 501 (1998)
- Dibbernbrunelli D, Atvars TD, J. Appl. Polym. Sci., 58(4), 779 (1995)
- Case FH, Honeycutt JD, TRIP, 2(8), 259 (1994)
- Flory PJ, "Principles of Polymer Chemistry", Cornell University Press, Ithaca & London (1971)
- Coleman MM, Painter PC, Prog. Polym. Sci., 20, 1 (1995)
- Guo W, Higgins JS, Polymer, 31, 699 (1990)
- van Krevelen DW, "Properties of Polymers", Elsevier, NY (1990)
- Brandrup J, Immergut EH, "Polymer Handbook", 3rd Edition, John Wiley & Sons, NY (1989)
- Coleman MM, Yang X, Painter PC, Graf JF, Macromolecules, 25, 4414 (1992)
- Vaidya MM, Levon K, Pearce EM, J. Polym. Sci. B: Polym. Phys., 33(15), 2093 (1995)