화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.5, 728-735, September, 2001
방사선에 의한 키토산을 포함하는 PVA와 PVP 하이드로겔의 제조 및 특성
Preparation and Characterization of Hydrogels of PVA and PVP Containing Chitosan by Radiation
E-mail:
초록
본 연구에서는, (60)Co 방사선(γ-rays) 가교를 이용하여 PVA/키토산과 PVP/키토산의 혼합물로부터 하이드로겔을 제조하였다. 하이드로겔이 상처 치료용 드레싱으로 사용될 수 있는지 예측하기 위해 겔화율, 팽윤도, 겔강도같은 기계적 성질을 측정하였다. PVA와 키토산 및 PVP와 키토산의 비는 97:3~90:10이고, PVA/키토산 밑 PVP/키토산 용액의 고형분의 농도는 15 wt%이었다. 하이드로겔의 기계적 성질에 조사선량이 미치는 영향을 예측하기 위해 PVA/키토산 및 PVP/키토산 혼합물에 25 ~ 70kGy의 감마선을 조사하였다. 겔화율과 겔강도는 키토산 조정비가 작을수록, 조사선량이 커질수록 증가하였다. 팽윤도는 키토산 조성비가 클수록, 조사선량이 작을수록 증가하였다.
In this study, hydrogels from mixtures of chitosan/poly(vinyl alcohol)(PVA) and chitosan/poly(N-vinylpyrrolidone)(PVP) were prepared by γ-ray irradiation, and the mechanical properties such as gelation, water absorptivity and gel strength were examined to evaluate the applicability of these for wound dressing. The PVA: chitosan and PVP: chitosan ratio were in the range of 97:3~90:10, and the solid concentration of PVA/chitosan and PVP/chitosan solution were 15 wt%. Gamma irradiation with doses of 25, 35, 50, 60 and 70kGy, was exposed to mixtures of PVA/chitosan and PVP/chitosan to evaluate the effect of irradiation dose. Gel content and gel strength increased as chitosan concentrations in PVA/chitosan and PVP/chitosan decreased, and as irradiation dose increased. Swelling degree increased as chitosan concentrations in PVP/chitosan and PVA/chitosan increased, and as irradiation dose decreased.
  1. Silver FH, Doillon, "Biocompatibility. Interactions of Biological and Implantable Materials", VCH Publ. Inc., New York (1989)
  2. Peppas NA, "Hydrogels in Medicine and Pharmacy", ed. by Boca Raton, vol. I, II, III, CRC Press. Ind., Florida, 1986, 1987
  3. Pedley DG, Skelly PJ, Tighe BJ, Br. Polym. J., 10, 99 (1980)
  4. Ralner BD, "Biomedical Applications of Hydrogels: Review and Critical Appraisal", ed. by D.F. Williams, p. 145, CRC Press, Boca Raton (1981)
  5. Kudela V, "Polymers: Biomaterials and Medical Applications", ed. by J.I. Kroschwitz, p. 228, John Wiley & Sons, New York (1989)
  6. Rosiak JM, J. Control. Release, 31, 9 (1994) 
  7. Chand T, Sharma CP, Art. Cells. Art. Org., 18, 1 (1990)
  8. Braek GS, Anthonsen T, Sandford P, "Chitin and Chitosan", Elsevier Press, New York (1989)
  9. Zikakis JP, "Chitin, Chitosan and Related Enzymes", Academic Press, New York (1984)
  10. Burczak K, Fujisato T, Hatada M, Ikada Y, Biomaterials, 15, 231 (1994) 
  11. Hirai T, Okinaka T, Amemiya Y, Kobayashi K, Hirai M, Hayashi S, Augewandte Makromolekulare Chemie., 240, 213 (1996) 
  12. Clough RL, Shalaby SW, "Radiation Effects on Polymers", p. 271, Maple Press. Inc., York, PA (1990)
  13. Rosiak JM, Rucinska-Rybus A, Pekala W, U.S. Patent, 4,871,490 (1989)
  14. Rosiak JM, Ulanski P, Pajensky LA, Yoshii F, Makuuchi K, Radiat. Phys. Chem., 46(2), 161 (1995) 
  15. Razzak MT, Erizal Z, Dewi SP, Lely H, Taty E, Sukirno, Radiat. Phys. Chem., 55, 153 (1999) 
  16. Conix A, Smets G, J. Polym. Chem., 13, 221 (1955)
  17. Seo H, Mitsuhashi K, Tanibe H, "In Advanced in Chitin and Chitosan", eds. by C.J. Brine, P.A. Sandford, and J.P. Zikakis, p. 34, Elservier Applied Science, London (1992)
  18. Shu P, Schmitt KD, Colloids Surf. A: Physicochem. Eng. Asp., 110, 273 (1996) 
  19. Tranquilan C, Yoshii F, Dela Rosa AM, Makuuchi K, Radiat. Phys. Chem., 55, 127 (1999) 
  20. Miranda LF, Lugao AB, Machado LDB, Ramanathan LV, Radiat. Phys. Chem., 55, 709 (1999)