화학공학소재연구정보센터
Journal of Power Sources, Vol.97-98, 129-132, 2001
Effects of synthesis condition of graphitic nanocabon tube on anodic property of Li-ion rechargeable battery
Effects preparation condition of multiwall carbon nanotube on Li intercalation were investigated in this study. Both Li intercalation and reversible capacities increased with increasing contact time of CH4 on Ni catalyst when the multiwall carbon nanotube was prepared. Raman spectroscopy suggested that the content of graphitic carbon tube increased with increasing the contact time of CH4 upon synthesis. Therefore, in case of tubular carbon, graphitic carbon also exhibited a larger capacity for Li intercalation comparing with that of amorphous one. Intercalation and reversible capacity for Li insertion at first cycle were attained to a value of 430 and 320 mAh/g, respectively, on the carbon nanotube obtained at the contact time higher than 100 g-cat h/mol.