화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.7, No.5, 316-325, September, 2001
Comparative Study of Effects of Rubbing Parameters on Polyimide Alignment Layers and Liquid Crystal Alignment
E-mail:
The effects of both rubbing force and rubbing density on polyimide alignment layers (ALs) and liquid crystal (LC) alignment were investigated, applying a wide range of pile impression and the number of rubbings. Weak rubbing creates inhomogeneous, partial modification of the AL, and in the region of weak rubbing reorientation of functional groups at the polyimide surface, orientation of the polyimide backbone along the rubbing direction, uniformity of LC alignment, pretilt angle, and azimuthal anchoring energy all increase with either pile impression (rubbing force) or the number of rubbings (rubbing density), showing a correlation between them. In the regime of strong rubbing where the AL gets sufficiently modified and the defect-free uniform alignment is thus achieved, the effects of rubbing force on these features are quite different from those of rubbing density, suggesting that the force and the density should be independently treated for the better characterization of the rubbing process. High-force rubbing further increases the modified surface area and surface polarity of the AL and consequently causes a decrease in pretilt angle and enhancement of both anchoring energy and thermal stability of pretilt angle, which doesn't occur for a greater number of low-force rubbings.
  1. Geary JM, Goodby JW, Kmetz AR, Patel JS, J. Appl. Phys., 62, 4100 (1987)
  2. Cognard J, Mol. Cryst. Liq. Cryst., Suppl.1, 1 (1982)
  3. van Aerle NAJM, Barmentlo M, Hollering RWJ, J. Appl. Phys., 74, 3111 (1993)
  4. Han KY, Uchida T, J. SID, 3, 15 (1995)
  5. Seo DS, Araya K, Yoshida N, Nishigawa M, Yabe Y, Kobayashi S, Jpn. J. Appl. Phys., 34, L503 (1995)
  6. Huang JY, Li JS, Juang YS, Chen SH, Jpn. J. Appl. Phys., 34, 3163 (1995)
  7. Nejoh H, Surf. Sci., 256, 94 (1991)
  8. Toney MF, Russell TP, Logan JA, Kikuchi H, Sands JM, Kumar SK, Nature, 374(6524), 709 (1995)
  9. Lee ES, Saito Y, Uchida T, Jpn. J. Appl. Phys., 32, L1822 (1993)
  10. Pidduck AJ, Bryan-Brown GP, Haslam S, Bannister R, Kitely I, McMaster TJ, Boogaad L, J. Vac. Sci. Technol., A14, 1723 (1992)
  11. Wu HM, Yang JH, Luo Q, Sun ZM, Zhu YM, Appl. Phys., B62, 613 (1996)
  12. Zhu YM, Wang L, Lu ZH, Wei Y, Chen XX, Tang JH, Appl. Phys. Lett., 65, 49 (1994)
  13. Kado H, Yokoyama K, Tohda T, Rev. Sci. Instrum., 63, 3330 (1992)
  14. Ito T, Nakanishi K, Nishigawa M, Yokoyama Y, Takeuchi Y, Polym. J., 27, 240 (1995)
  15. Ishihara S, Wakemoto H, Nakazima K, Matsuo Y, Liq. Cryst., 4, 669 (1989)
  16. Kim YB, Olin H, Park SY, Choi JW, Komitov L, Matuszczyk M, Lagerwall ST, Appl. Phys. Lett., 66, 2218 (1995)
  17. Sakamoto K, Aratune R, Ito N, Ushioda S, Suzuki Y, Morokawa S, Jpn. J. Appl. Phys., 33, L1323 (1994)
  18. Sawa K, Sumiyoshi K, hirai Y, Taeishi K, Kamejima T, Jpn. J. Appl. Phys., 33, 6273 (1994)
  19. Lee ES, Vetter P, Miyashita T, Uchida T, Jpn. J. Appl. Phys., 32, L1339 (1993)
  20. Hasegawa R, Mori Y, Sasaki H, Ishibashi M, Jpn. J. Appl. Phys., 35, 3492 (1996)
  21. Murata M, Yoshida E, Uekita M, Tawada Y, Jpn. J. Appl. Phys., 32, L676 (1993)
  22. Lee KW, Paek SH, Lien A, Durning C, Fukuro H, Macromolecules, 29(27), 8894 (1996)
  23. Lee KW, Paek SH, Lien A, Durning CJ, Fukuro H, in Polymer Surfaces and Interfaces: Characterization, Modification, and Application, K.L. Mittal and K.W. Lee, Eds., pp. 295-315, VSP, Amsterdam (1997)
  24. Zhuang X, Marrucci L, Shen YR, Phys. Rev. Lett., 73, 1513 (1994)
  25. Barmentlo M, Hollering RWJ, van Aerle NAJM, Phys. Rev., A, A46, R4490 (1992)
  26. Becker ME, Kilian RA, Kosmowski BB, Mlynski DA, Mol. Cryst. Liq. Cryst., 132, 167 (1986)
  27. Seo DS, Kobayashi S, Nishikawa M, Yabe Y, Liq. Cryst., 19, 289 (1995)
  28. Seo DS, Kobayashi S, Mochizuki A, Appl. Phys. Lett., 60, 1025 (1992)
  29. van Aerle NAJM, Barmentlo M, Hollering RWJ, Proc. Eurodisplay 1993, 5 (1993)
  30. Nishikawa M, Miyamoto T, Kawamura S, Tsuda Y, Bessho N, Proc. Japan Display 1992, 819 (1992)
  31. Sato Y, Sato K, Uchida T, Jpn. J. Appl. Phys., 31, L579 (1992)
  32. Seo DS, Kobayashi S, Appl. Phys. Lett., 66, 1202 (1995)
  33. Oh-Ide S, Kuniyasu S, Kobayashi S, Mol. Cryst. Liq. Cryst., 164, 91 (1988)
  34. Uchida T, Hirano M, Sakai H, Liq. Cryst., 5, 1127 (1989)
  35. Seo DS, Muroi K, Kobayashi S, Mol. Cryst. Liq. Cryst., 213, 223 (1992)
  36. Scheffer TJ, Nehring J, J. Appl. Phys., 48, 1783 (1977)
  37. Faetti S, in Physics of Liquid Crystalline Materials, I.-C. Khoo and F. Simoni, Eds., pp. 301-336, Gordon and Breach Science, Philadelphia (1991)
  38. de Gennes PG, Prost J, The Physics of Liquid Crystals, pp. 98-117, Clarendon, Oxford (1993)
  39. Lien A, J. SID, 1, 159 (1993)
  40. Jiang M, Wang Z, Sun R, Ma K, Ma R, Huang X, Jpn. J. Appl. Phys., 33, L1242 (1994)
  41. Kikuchi H, Logan JA, Yoon DY, J. Appl. Phys., 79, 6811 (1996)
  42. Pidduck AJ, Bryan-Brown GP, Haslam SD, Bannister R, Liq. Cryst., 21, 759 (1996)
  43. Wu S, Polymer Interfaces and Adhesion, pp. 1-28, Marcel Dekker, New York (1982)
  44. Ishida H, Wellinghoff ST, Baer E, Koenig JL, Macromolecules, 13, 826 (1980)
  45. Molis SE, in Polyimides: Materials, Chemistry, and Characterization, C. Feger, M.M. Khojasteh, and J.E. McGrath, Eds., pp. 659-672, Elsevier Science, Amsterdam (1989)
  46. The pretilt angle measured at a spot containing the defects was smaller than that at a defect-free spot. The defects noted here disappeared after 15-min annealing at 120℃ greater than T(NI) of ZLI-5080
  47. Paek SH, Lee KW, Lien A, Durning CJ, J. Appl. Phys., 83, 1270 (1998)
  48. Kim YB, Ban BS, Liq. Cryst., 26, 1579 (1999)