HWAHAK KONGHAK, Vol.39, No.5, 557-562, October, 2001
가압유동층 연소로에서 무연탄의 연소특성
Combustion Characteristics of Domestic Anthracite Coal in a Pressurized Fluidized Bed Combustor
E-mail:
초록
연소로의 층(bed)하부 직경이 0.17m, 높이가 2m이고, freeboard의 직경이 0.25m, 높이가 3m인 tapered bed 형태의 가압유동층 연소로에서 58.25%의 탄소와 0.34%의 황을 포함하고 있는 강원도 태백지역 무연탄의 연소 및 배가스 특성에 대해 연구하였다. 연소로의 압력은 6기압, 층 높이는 2m로 일정하게 유지한 상태에서, 연소 온도는 850-950℃범위에서 실험하였다. 또 공기의 유동화속도를 0.9-1.3m/s로 변화시키고, 과잉공기율 10-30% 범위로 실험하였다. 실험결과는 연소온도가 850℃에서 950℃로 증가함에 따라 연소효율은 93%에서 99.5%로 증가하였으며, NOx는 33-55 ppm으로 배출되었다. 또 N2O 17 ppm이하의 값을 얻었다. SO2의 배출농도는 850℃에서 950℃로 층온도가 증가함에 따라 증가하였다.
The combustion and emissions characteristics of the domestic anthracite coal containing 58.25% carbon and 0.34% sulfur was investigated in pressurized fluidized bed combustor(PFBC), 0.17 m bed I.D.×2 m height tapered bed and 0.25 m I.D.×3 m height freeboard. The pressure of the combustor was constantly maintained at 6 atm, and the combustion temperatures are varied from 850 ℃ to 950 ℃. Also the air velocity was changed from 0.9 to 1.3 m/s. Consequently, combustion efficiency and NOx concentration in the flue gas with increasing combustion temperature from 850 ℃ to 950 ℃ were increased in the ranges 93-99.5% and 33-70 ppm respectively. But N2O concentration is obtained less then 20 ppm. SO2 concentration increasing bed temperature from 850 ℃ to 950 ℃ in the flue gas was increased.
Keywords:Pressurized Fluidized Bed Combustor;Emission Characteristics;Domestic Anthracite;Coal Combustion
- Choi JH, Son JE, Kim SD, HWAHAK KONGHAK, 26(5), 494 (1988)
- Jin GT, Han KH, Shun D, Yi CK, Bae DH, Jo SH, "Development of Bench Scale Pressurized Fluidized Bed Combustion Technology," Research Report, KIER-973402, KIER, 28 (1998)
- Lee YW, Son J, Chem. Ind. Technol., 13(1), 53 (1995)
- Han KH, Oh DJ, Ryu JI, Jin GT, Transactions Korean Soc. Mechanical Eng. B, 24(5), 677 (2000)
- Son J, Park YS, Park YO, Choi JH, Park YC, Yi CK, Han KH, Bae DH, Jo SH, "A Development of Low Calorific Value Coal Combustion Technology in a Fluidized Bed Combustor," Research Report, KE-86-21, KIER, 15 (1986)
- Ake TR, Dixit VB, Mongeon RK, Proc. of 12th Int'l Conf. on Fluidized Bed Combustion, 81 (1993)
- Shimizu T, Fujita D, Ishizu K, Kobayashi S, Inagaki M, Proc. of 12th Int'l Conf. on Fluidized Bed Combustion, 611 (1993)
- Suzuki Y, Hatano H, Proc. 17th annual Int. Pittsburgh Coal Conf. 649 (2000)
- Horvath A, Hulkkonen S, Jahkola A, Proc. of 10th Int'l. Conf. on Fluidized Bed Combustion, 1083 (1989)
- Podolski WF, Miller SA, "Pressurized Fluidized Bed Combustion Technology," Noyes Data Co., New Jersey (1983)
- Verweyon N, Renz U, Reinartz A, Proc. 11th Int. Conf. Fluidized Bed Combustion, 1401 (1991)
- Wallman PH, Carlsson RCJ, Proc. 11th Int. Conf. Fluidized Bed Combustion, 1571 (1991)
- Iisa K, Hupa M, J. Inst. Energy, 65, 201 (1992)
- Sarofim A, Goel SK, Morihara A, International Clean Coal Technology Symp. on PFBC, Kitakyusyu, Japan, July, 12 (1994)
- Hajaligol MR, Longwell JP, Sarofim AF, Ind. Eng. Chem. Res., 27(12), 2203 (1988)
- Yrjas KP, Lisa K, Hupa M, Proc. of 12th Int'l Conf. on Fluidized Bed Combustion, 265 (1993)
- Koskinen J, Lehtonen P, Sellakumar KM, Proc. of 13th Int'l Conf. on Fluidized Bed Combustion, 369 (1995)
- Johnsson JE, Proc. of 10th Int'l Conf. on Fluidized Bed Combustion, 1111 (1989)
- Jensen A, Johnson JE, Andries J, Laughlin K, Read G, Mayer M, Baumann H, Bonn B, Fuel, 74(11), 1555 (1995)
- Shun D, Bae DH, Han KH, Son JE, Kang Y, Wee YH, Lee JS, Ji PS, HWAHAK KONGHAK, 34(3), 321 (1996)
- Arthur JR, Trans. Faraday Soc., 52, 16 (1951)
- Leckner B, Prog. Energy Combust. Sci., 24(1), 31 (1998)
- Miettinen H, Paulsson M, Stromberg D, Energy Fuels, 9(1), 10 (1995)