화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.5, 557-562, October, 2001
가압유동층 연소로에서 무연탄의 연소특성
Combustion Characteristics of Domestic Anthracite Coal in a Pressurized Fluidized Bed Combustor
E-mail:
초록
연소로의 층(bed)하부 직경이 0.17m, 높이가 2m이고, freeboard의 직경이 0.25m, 높이가 3m인 tapered bed 형태의 가압유동층 연소로에서 58.25%의 탄소와 0.34%의 황을 포함하고 있는 강원도 태백지역 무연탄의 연소 및 배가스 특성에 대해 연구하였다. 연소로의 압력은 6기압, 층 높이는 2m로 일정하게 유지한 상태에서, 연소 온도는 850-950℃범위에서 실험하였다. 또 공기의 유동화속도를 0.9-1.3m/s로 변화시키고, 과잉공기율 10-30% 범위로 실험하였다. 실험결과는 연소온도가 850℃에서 950℃로 증가함에 따라 연소효율은 93%에서 99.5%로 증가하였으며, NOx는 33-55 ppm으로 배출되었다. 또 N2O 17 ppm이하의 값을 얻었다. SO2의 배출농도는 850℃에서 950℃로 층온도가 증가함에 따라 증가하였다.
The combustion and emissions characteristics of the domestic anthracite coal containing 58.25% carbon and 0.34% sulfur was investigated in pressurized fluidized bed combustor(PFBC), 0.17 m bed I.D.×2 m height tapered bed and 0.25 m I.D.×3 m height freeboard. The pressure of the combustor was constantly maintained at 6 atm, and the combustion temperatures are varied from 850 ℃ to 950 ℃. Also the air velocity was changed from 0.9 to 1.3 m/s. Consequently, combustion efficiency and NOx concentration in the flue gas with increasing combustion temperature from 850 ℃ to 950 ℃ were increased in the ranges 93-99.5% and 33-70 ppm respectively. But N2O concentration is obtained less then 20 ppm. SO2 concentration increasing bed temperature from 850 ℃ to 950 ℃ in the flue gas was increased.
  1. Choi JH, Son JE, Kim SD, HWAHAK KONGHAK, 26(5), 494 (1988)
  2. Jin GT, Han KH, Shun D, Yi CK, Bae DH, Jo SH, "Development of Bench Scale Pressurized Fluidized Bed Combustion Technology," Research Report, KIER-973402, KIER, 28 (1998)
  3. Lee YW, Son J, Chem. Ind. Technol., 13(1), 53 (1995)
  4. Han KH, Oh DJ, Ryu JI, Jin GT, Transactions Korean Soc. Mechanical Eng. B, 24(5), 677 (2000)
  5. Son J, Park YS, Park YO, Choi JH, Park YC, Yi CK, Han KH, Bae DH, Jo SH, "A Development of Low Calorific Value Coal Combustion Technology in a Fluidized Bed Combustor," Research Report, KE-86-21, KIER, 15 (1986)
  6. Ake TR, Dixit VB, Mongeon RK, Proc. of 12th Int'l Conf. on Fluidized Bed Combustion, 81 (1993)
  7. Shimizu T, Fujita D, Ishizu K, Kobayashi S, Inagaki M, Proc. of 12th Int'l Conf. on Fluidized Bed Combustion, 611 (1993)
  8. Suzuki Y, Hatano H, Proc. 17th annual Int. Pittsburgh Coal Conf. 649 (2000)
  9. Horvath A, Hulkkonen S, Jahkola A, Proc. of 10th Int'l. Conf. on Fluidized Bed Combustion, 1083 (1989)
  10. Podolski WF, Miller SA, "Pressurized Fluidized Bed Combustion Technology," Noyes Data Co., New Jersey (1983)
  11. Verweyon N, Renz U, Reinartz A, Proc. 11th Int. Conf. Fluidized Bed Combustion, 1401 (1991)
  12. Wallman PH, Carlsson RCJ, Proc. 11th Int. Conf. Fluidized Bed Combustion, 1571 (1991)
  13. Iisa K, Hupa M, J. Inst. Energy, 65, 201 (1992)
  14. Sarofim A, Goel SK, Morihara A, International Clean Coal Technology Symp. on PFBC, Kitakyusyu, Japan, July, 12 (1994)
  15. Hajaligol MR, Longwell JP, Sarofim AF, Ind. Eng. Chem. Res., 27(12), 2203 (1988) 
  16. Yrjas KP, Lisa K, Hupa M, Proc. of 12th Int'l Conf. on Fluidized Bed Combustion, 265 (1993)
  17. Koskinen J, Lehtonen P, Sellakumar KM, Proc. of 13th Int'l Conf. on Fluidized Bed Combustion, 369 (1995)
  18. Johnsson JE, Proc. of 10th Int'l Conf. on Fluidized Bed Combustion, 1111 (1989)
  19. Jensen A, Johnson JE, Andries J, Laughlin K, Read G, Mayer M, Baumann H, Bonn B, Fuel, 74(11), 1555 (1995) 
  20. Shun D, Bae DH, Han KH, Son JE, Kang Y, Wee YH, Lee JS, Ji PS, HWAHAK KONGHAK, 34(3), 321 (1996)
  21. Arthur JR, Trans. Faraday Soc., 52, 16 (1951)
  22. Leckner B, Prog. Energy Combust. Sci., 24(1), 31 (1998) 
  23. Miettinen H, Paulsson M, Stromberg D, Energy Fuels, 9(1), 10 (1995)