Energy & Fuels, Vol.15, No.2, 463-469, 2001
Thermochemical conversion of CH4 to C-2-hydrocarbons and H-2 over SnO2/Fe3O4/SiO2 in methane - Water co-feed system
Highly endothermic conversion of methane to C-2-hydrocarbons and hydrogen was catalytically demonstrated over the SnO2/Fe3O4/SiO2 at 1173 K under co-feeding of methane and steam. The main products were C2H4, C2H6, CO, CO2, and hydrogen. At a low W/F value (a high GHSV), methane was selectively converted to C-2-hydrocarbons and hydrogen, while at a high W/F value (a low GHSV), steam reforming of methane to produce CO and hydrogen became dominant. At the GHSV = 4000-12000 h(-1), 87-94% of C-2 selectivity with 4-6% of methane conversion was obtained at the C-2-formation rate = 4-8 mmol-C h(-1) g(-1)-cat. This process offers the efficient conversion of natural gas to C-2-hydrocarbon and hydrogen utilizing high-temperature heat such as concentrated solar radiation below 1173 K.