Journal of the American Chemical Society, Vol.123, No.27, 6503-6507, 2001
Molecular dynamics simulations of the rehydration of folded and unfolded cytochrome c ions in the vapor phase
Molecular dynamics (MD) simulations have been performed to study the rehydration of compact and unfolded cytochrome c ions in the vapor phase. Experimental studies have shown that the compact conformations adsorb many more water molecules than unfolded ones when exposed to water vapor. MD simulations performed with up to 150 water molecules reproduce the key experimental observations, including a partial refolding caused by hydration. According to the calculations it is more energetically favorable to hydrate the compact conformation in the initial stages of hydration, because it is easier for a water molecule to interact simultaneously with several polar groups (due to their proximity). The protonated side chains are not favored hydration sites in the simulations because they have "self-solvation" shells which must be disrupted for the water to penetrate. For both conformations, the adsorbed water molecules are mainly located in surface crevices.