화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.123, No.13, 2958-2963, 2001
Peptoid oligomers with alpha-chiral, aromatic side chains: Effects of chain length on secondary structure
Oligomeric N-substituted glycines or "peptoids" with alpha -chiral, aromatic side chains can adopt table helices in organic or aqueous solution, despite their lack of backbone chirality and their inability to form intrachain hydrogen bonds. Helical ordering appears to be stabilized by avoidance of steric clash as well as by electrostatic repulsion between backbone carbonyls and pi clouds of aromatic rings in the side chains. Interestingly, these peptoid helices exhibit intense circular dichroism (CD) spectra that closely resemble those of peptide alpha -helices. Here, we have utilized CD to systematically study the effects of oligomer length, concentration, and temperature on the chiral secondary structure of organosoluble peptoid homooligomers ranging from 3 to 20 (R)-N-(1 -phenylethyl)glycine (Nrpe) monomers in length. We find that a striking evolution in CD spectral features occurs for Nrpe oligomers between 4 and 12 residues in length, which we attribute to a chain length-dependent population of alternate structured conformers having cis versus trans amide bonds. No significant changes are observed in CD spectra of oligomers between 13 and 20 monomers in length, suggesting a minimal chain length of about 13 residues for the formation of stable poly(Nrpe) helices. Moreover, no dependence of circular dichroism on concentration is observed for an Nrpe hexamer, providing evidence that these helices remain monomeric in solution. In light of these new data, we discuss chain length-related factors that stabilize organosoluble peptoid helices of this class, which are important for the design of helical, biomimetic peptoids sharing this structural motif.