화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.123, No.41, 10046-10055, 2001
On the apparently anomalous distance dependence of charge-transfer rates in 9-amino-6-chloro-2-methoxyacridine-modified DNA
From previous thermal and photoinduced charge-transfer reactions in duplex DNA there is accumulative evidence for an attenuation parameter beta of the distance dependence in the range 0.6-0.8 Angstrom (-1), with the exception of one specific system exhibiting beta = 1.5 Angstrom (-1) which is reinvestigated in this paper. Femtosecond to nanosecond time-resolved pump-probe spectroscopy has been used to follow photoinduced charge-shift dynamics in DNA duplexes containing a covalently appended, protonated 9-alkylamino-6-chloro-2-methoxyacridine chromophore. This acridine derivative (X+) resides in the DNA duplex at a specific abasic site, which is highly defined as reflected in the monoexponentiality of the kinetics. In the presence of only neighboring A:T base pairs, no charge transfer occurs within the excited-state lifetime (18 ns) of the chromophore. However, the presence of a guanine nucleobase as either a nearest neighbor or with one interspersed A:T base pair does result in fluorescence quenching. In the case of nearest neighbors, the intermediate radical state X-circle is formed within 4 ps and decays on the 30 ps time scale. Placing one A:T base pair between the X+ and guanine slows down the forward transfer rate by 3 orders of magnitude, corresponding to an apparent beta value of >2.0 Angstrom (-1). This dramatic decrease in the rate is due to a change in charge-transfer mechanism from a (nearly) activationless to a thermally activated regime in which the forward transfer is slower than the back transfer and the X-circle state is no longer observed. These observations indicate that the distance dependence of charge injection in the X+-labeled DNA duplex is not solely caused by a decrease in electronic couplings but also by a concomitant increase of the activation energy with increasing distance. This increase in activation energy may result from the loss of driving force due to excited-state relaxation competing with charge transfer, or reflect distance-dependent changes in the energetics, predominantly of the low-frequency reorganization energy in this charge-shift reaction, on purely electrostatic grounds. To test the hypothesis of distance-dependent activation energy, guanine has been replaced by 7-deazaguanine, its easier-to-oxidize purine analogue. In these duplexes, a similar change of charge-transfer mechanism is found. However, consistent with an a priori larger driving force this change occurs at a larger donor-acceptor separation than in the X+-guanine systems. Independent of the detailed contributions to the distance-dependent activation energy, this phenomenon illustrates the complex nature of experimental beta values.