화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.6, 782-788, November, 2001
Dopamine으로 수식된 [Ru(v-bpy)3](2+)와 Vinylbenzoic Acid의 공중합 피막 전극의 전기화학 특성
Electrochemical Characteristics at Copolymeric Film Electrodes of [Ru(v-bpy)3]2+ and Vinylbenzoic Acid Modified with Dopamine
E-mail:
초록
Ru(v-bpy)3](2+)와 vinylbenzoic acid(vba)의 공중합 피막전극에 dopamine을 반응시켜 수식된 전극을 제작하고 이 고분자의 중합속도와 산화-환원 및 전자전달 특성을 연구하였다. 두 단량체의 몰비가 5:2일 때 공중합속도 상수는 1.84×10(-2) s(-1)이고 중합된 피막상에서 두 성분비는 5:1.68이였다. GC/p.[Ru(v-bpy)3](2+)/vba - dopamine형의 수식된 전극에서 hydroquinone=quinone+2H(+)+2e(-)의 전극반응에 의한 형식전위는 인산염완충용액(pH=7.10)에서 0.17 V이며, 전기촉매반응에서 속도상수(k(ch)Γ)는 2.58×10(5) cms(-1)로서 수식되기 전보다 2.41배 큰 값이다. EQCM법에 의한 산화-환원과정에서 질량변화는 수식되기 전보다 3.28×10(3) gmol(-1) 더 크다.
The [Ru(v-bpy)3](2+) and vinylbenzoic acid (vba) were electrochemically copolymerized to afford electrodes modified with dopamine to study their properties such as electropolymerization rate, redox process, and electron transfer. The optimum mole ratio of the monomers was 5 : 2, which gave 1.84×10-2 s-1 of rate constant for first order reaction, while the ratio of the substances on the copolymeric film produced was 5:1.68. The formal potential produced from the hydroquinone=quinone+2H(+)+2e(-) reaction at the electrode of GC/p.[Ru(v-bpy)3]2(+)/vba-dopamine was 0.17 V in phosphate buffer (pH=7.10). The electrocatalytic rate was 2.58×10(5) cms(-1); 2.41 times faster than that of non.modified one. The mass change measured by EQCM was 3.28×03 gmol-1 which is larger than that of non.modified one.
  1. Weinberger BR, Kaufer J, Heeger AJ, Pron A, MacDiamid AG, Phys. Rev., B, Condens. Matter, 29, 7 (1979)
  2. Shirakawa H, Louis EJ, MacDiamid AG, Ching CK, Park Y, Heeger AJ, J. Chem. Phys., 60, 5098 (1978) 
  3. Lee YH, Shim WS, Lee DS, Polym.(Korea), 23(4), 587 (1999)
  4. Cha SK, J. Polym. Sci. B: Polym. Phys., 35(1), 165 (1997) 
  5. Lee D, Lim K, Char K, Rhee HW, Kim J, Polym.(Korea), 21(5), 803 (1997)
  6. Degrand C, Miller LL, J. Am. Chem. Soc., 102, 5728 (1980) 
  7. Abruna HD, Denisevich P, Umana M, Meyer TJ, Murray RW, J. Am. Chem. Soc., 103, 1 (1981) 
  8. White HS, Kittlesen GP, Wrighton MS, J. Am. Chem. Soc., 104, 5375 (1984) 
  9. Park YW, Denenstein A, Chiang CK, Heeger AJ, MacDiamird AG, Solid State Commun., 29, 7 (1979)
  10. Peerce PJ, Bard AJ, J. Electroanal. Chem., 114, 6641 (1980)
  11. Cha SK, Abruna HD, Anal. Chem., 62, 274 (1990) 
  12. Degrand C, Miller LL, J. Electroanal. Chem., 117, 267 (1981) 
  13. Degrand C, Miller LL, J. Am. Chem. Soc., 102, 5728 (1980) 
  14. Degrand C, Laviron E, J. Electroanal. Chem., 117, 283 (1981) 
  15. Albery WJ, Eddowes MJ, Hall KJ, Hillman AR, J. Electrochem. Soc., 127, 654 (1980) 
  16. Bookbinder DC, Wrighton MS, J. Am. Chem. Soc., 102, 5123 (1980) 
  17. Pariente F, Tobalina F, Moreno G, Hemandez L, Lonzo E, Abruna HD, Anal. Chem., 69, 4065 (1997) 
  18. Davies CW, "Electrochemistry," p.147, Tower House, London, 1967 (1967)
  19. Pariente P, Lorenzo E, Abruna HD, Anal. Chem., 66, 4337 (1994) 
  20. Yang VC, Ngo TT, "Biosensors and Their Applications," chap. 3, Kluwer Academic/Plenum Publisher, N.Y., 2000 (2000)
  21. Rowe GK, Creager SE, J. Phys. Chem., 98(21), 5500 (1994) 
  22. Bard AJ, Rubinstein I, "Electroanalytical Chemistry," vol. 19, p. 109, Marcel Dekker, Inc. N.Y., 1996 (1996)
  23. Levich VG, "Physicochemical Hydrodynamics," Printice-Hall, 1962 (1962)
  24. Bard AJ, "Electroanalytical Chemistry," vol. 13, p. 191, Marcel Dekker Inc., 1984 (1984)
  25. Skotheim TA, "Handbook of Conducting Polymer," vol. 1, chap. 3, Mercel Dekker Inc., 1986 (1986)