화학공학소재연구정보센터
Polymer(Korea), Vol.25, No.6, 818-825, November, 2001
폴리카보네이트와 몬모릴로나이트 나노복합체의 층간삽입
Intercalation of Polycarbonate/Montmorillonite Nanocomposites
E-mail:
초록
폴리카보네이트 (PC)와 몬모릴로나이트 (montmorillonite, MMT)의 나노복합체를 용액 및 용융 혼합 방법으로 층간삽입시켜 제조하여 X.ray 실험으로 MMT의 층간간격 변화를 조사하였다. MMT로는 Na+를 양이온으로 갖는 순수 MMT (MMT.Na)와 도데실암모늄 (MMT. DA) 및 dimethyl hydrogenated tallow 2. ethylhexyl ammonium으로 개질된 MMT (MMT. 25A)를 사용하였다. PC/MMT. 25A와 PC/MMT. DA가 PC/ MMT. Na보다 층간거리의 증가폭이 컸으며, 혼합방법에 따라 최대 37 Å까지 층간간격이 증가하였다. 또, PC의 분자량이 작을수록, 혼합시간이 증가할수록 삽입이 잘 일어났다. 열중량분석법 (TGA)으로 측정한 열안정성은 PC/MMT. 25A가 PC/MMT. Na와 순수한 PC보다 우수함을 나타내었다.
Polycarbonate(PC)/montmorillonite (MMT) nanocomposites were prepared by solution and melt mixing methods. A d-spacing of the nanocomposites was measured by an X-ray diffractometer. Neat montmorillonite (MMT. Na) and MMTs modified by dodecyl ammonium (MMT. DA) or dimethyl hydrogenated tallow 2-ethylhexyl ammonium (MMT-25A) were used. The d-spacing value of PC/MMT-25A and PC/MMT-DA was higher than that of PC/MMT-Na. The d-spacing increased from around 12 to 37 Å depending on the mixing method. PC was more readily introduced to the gallery of MMT as the molecular weight of PC reduced and the mixing time increased. PC/MMT-25A showed higher thermal stability by thermogravimetric analysis (TGA) than PC/MMT-DA and PC/MMT-Na.
  1. Shi H, Lan T, Pinnavaia TJ, Chem. Mater., 8, 1584 (1996) 
  2. Gilman JW, Kashiwagi T, SAMPE J., 33(4), 40 (1997)
  3. Krishnamoorti R, Giannelis EP, Macromolecules, 30(14), 4097 (1997) 
  4. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, J. Polym. Sci. A: Polym. Chem., 31, 983 (1993) 
  5. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O, Kaji K, J. Polym. Sci. B: Polym. Phys., 32(4), 625 (1994) 
  6. Ryu JG, Park GR, Lyu SG, Rhew JH, Sur GS, Polym.(Korea), 22(2), 328 (1998)
  7. Jang LW, Lee DJ, M.S. Thesis, Inha Univ., 1996 (1996)
  8. Messersmith PB, Giannelis EP, Chem. Mater., 5, 1064 (1993) 
  9. Chol HK, Park YH, Lyu SG, Kim BS, Sur GS, Polym.(Korea), 23(3), 456 (1999)
  10. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP, Macromolecules, 28(24), 8080 (1995) 
  11. Vaia RA, Giannelis EP, Macromolecules, 30(25), 7990 (1997) 
  12. Vaia RA, Sauer BB, Tse OK, Giannelis EP, J. Polym. Sci. B: Polym. Phys., 35(1), 59 (1997) 
  13. Usuki A, Kato M, Okada A, Kurauchi T, J. Appl. Polym. Sci., 63(1), 137 (1997) 
  14. Vaia RA, Ishii H, Giannelis EP, Chem. Mater., 5, 1694 (1993) 
  15. Moet AS, Akelah A, Mater. Lett., 18, 97 (1993) 
  16. Lee DC, Jang LW, J. Appl. Polym. Sci., 61(7), 1117 (1996) 
  17. Lan T, Kaviratna PD, Pinnavaia TJ, Chem. Mater., 6, 573 (1994) 
  18. Yano K, Usuki A, Okada A, J. Polym. Sci. A: Polym. Chem., 35(11), 2289 (1997) 
  19. Huang XY, Lewis S, Brittain WJ, Vaia RA, Macromolecules, 33(6), 2000 (2000) 
  20. Choi HJ, Kim SG, Hyun YH, Jhon MS, Macromol. Rapid Commun., 22, 320 (2001) 
  21. Kurata M, Tsunashima Y, "Polymer Handbook," eds. by J. Brandrup and E.H. Immergut, p. 7/1, John Wiley & Sons, New York, 1989 (1989)
  22. Vaia RA, Teukolsky RK, Giannelis EP, Chem. Mater., 6, 1017 (1994) 
  23. Grulke EA, "Polymer Handbook," eds. by J. Brandrup and E.H. Immergut, p. 7/519, John Wiley & Sons, New York, 1989 (1989)