화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.122, No.44, 10761-10768, 2000
Degradable poly(beta-amino esters): Synthesis, characterization, and self-assembly with plasmid DNA
Poly(beta -aminoesters) 1-3 were synthesized via the addition of N,N'-dimethylethylenediamine, piperazine, and 4,4'-trimethylenedipiperidine to 1,4-butanediol diacrylate. Polymerization proceeded exclusively via the conjugate addition of the secondary amines to the bis(acrylate ester). Polymers were isolated in up to 86% yields with molecular weights ranging up to 31 200 relative to polystyrene standards. The polymers degraded hydrolytically in acidic and alkaline media to yield 1,4-butanediol and beta -amino acids 4a-6a and the degradation kinetics were investigated at pH 5.1 and 7.4. In general, the polymers degraded more rapidly at pH 7.4 than at pH 5.1. In initial screening assays, both the polymers and their degradation products were determined to be noncytotoxic relative to poly(ethylene imine), a polymer conventionally employed as a synthetic transfection vector. Polymers 1-3 interacted electrostatically with polyanionic plasmid DNA in water and buffer at physiological pH, as determined by agarose gel electrophoresis, quasi-elastic dynamic light scattering (QELS), and zeta -potential measurements. All three polymers condensed DNA into soluble DNA/polymer particles on the order of 50-200 nm. Particles formed from polymers 1 and 2 aggregated extensively, while particles formed from polymer 3 exhibited positive zeta -potentials (e.g., +10 to +15 mV) and did not aggregate for up to 18 h. The nanometer-sized dimensions and reduced cytotoxicities of these DNA/polymer complexes suggest that these types of polymers may be useful as degradable polymeric gene transfer vectors.