Canadian Journal of Chemical Engineering, Vol.72, No.6, 1066-1079, 1994
The Design of Experiments, Training and Implementation of Nonlinear Controllers Based on Neural Networks
In the area of nonlinear predictive control, several control schemes using artificial neural networks have been proposed. In this work, the issues relating to the information contents of the data used to train the neural network components of these nonlinear predictive control schemes are considered. This raises questions about the design of experiments. A class of feedback-feedforward nonlinear controller based on the model predictive structure (also known as Internal Model Control, IMC, structure) is investigated. The implementation and performance of these neural network based controllers, together with comparisons to other nonlinear and linear controllers, are illustrated on two nonlinear continuous-stirred-tank-reactor simulations.