Journal of the American Chemical Society, Vol.122, No.17, 4032-4038, 2000
Unsymmetrical azo initiators increase efficiency of radical generation in aqueous dispersions, liposomal membranes, and lipoproteins
Lipid peroxidation studies often employ the use of azo initiators to produce a slow, steady source of free radicals, but the lack of initiators capable of efficiently generating radicals in lipid aggregates such as micelles and membranes has created persistent problems in these investigations. We report here the synthesis and study of unsymmetrically substituted (hydrophilic/hydrophobic) azo initiators C-8, C-12, and C-16 that increase the efficiency of radical generation in lipophilic regions of aqueous emulsions such as micelles and liposomes. Radical generation from these initiators was monitored in micelles? liposomes, and lipoproteins by the use of two radical scavengers, one that scavengers lipophilic peroxyl radicals and one that scavenges hydrophilic peroxyls. The lipophilic radical scavenger used was the well-known antioxidant alpha-tocopherol and thr hydrophilic radical scavenger used was uric acid. Two peroxyl radicals are trapped by each of these scavengers, tocopherol presumably being biased toward reacting with lipid soluble radicals, uric acid presumably reacting preferentially with water-soluble radicals. In Triton X-100 micelles the unsymmetrical initiators C-8 and C-16 display an increase in both alpha-TOH (alpha-tocopherol) trapping and in overall radical generation efficiency compared to the symmetrical initiators C-0 (hydrophilic) and MeOAMVN (lipophilic). The unsymmetrical azo initiators performance in liposomes was excellent (increased cage escape with lipid compartment access). In low-density lipoprotein oxidations, the initiators C-8, C-12, and C-16 also provided advantages over C-0 and MeOAMVN. The hydrophilic/hydrophobic character of the two radicals generated from the unsymmetrical initiators is an important factor for separating the geminate radical pair, These initiators, when compared to the widely used symmetrical azo initiators, provide an advantage of free radical production, lipophilic access, and constant radical generation in the investigation of lipid peroxidation in various media.