화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.122, No.3, 460-465, 2000
Discrimination between enantiomers of structurally related molecules: Separation of benzodiazepines by molecularly imprinted polymers
Molecular imprinting has been used to create synthetic receptor sites for a series of chiral benzodiazepines. A detailed HPLC analysis of binding properties using molecularly imprinted polymers (MIPs) as the stationary phase showed that binding, as measured by chromatographic retention, shows significant dependence on the chiral match or mismatch. In addition, the shape and spatial orientation of functionality of the imprinted binding site is also critical for recognition. Imprinted polymers, therefore, are not only able to discriminate between enantiomers of the imprinted molecule, they also demonstrate an ability to discriminate between a wide range of enantiomers of structurally related molecules that have not been imprinted. The ability of MIPs to discriminate between enantiomers of molecules in favor of the imprinted absolute configuration, even as the structural homology between the enantiomers and the original template decreases, indicates that the synthetic benzodiazepine receptors may serve as crude mimics of the natural receptor.