화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.8, 853-858, December, 2001
Red mud의 표면처리에 의한 에폭시 수지/red mud 나노복합재료의 경화거동 및 열안정성
Cure Behavior and Thermal Properties of Epoxy Resin/Red Mud Nanocomposites Prepared by Surface Treatment of Red Mud
E-mail:
초록
본 연구에서는 red mud (RM)의 산처리가 에폭시/red mud (RM) 나노복합재료의 경화거동 및 열안정성에 미치는 영향에 관하여 시차주사 열량계 (DSC)와 열중량 분석기기 (TGA)를 통하여 조사하고자 하였다. 실험결과로부터, RM의 표면처리는 에폭시/RM 나노복합재료의 유리전이 온도 (T(g)), 경화 속도, 경화 활성화에너지, 그리고 열안정성 등을 포함하는 경화거동 및 열적성질이 향상을 위한 중요한 요인으로 작용하였다. 또한, 표면처리는 RM 표면에 산성그룹 등의 관능기들이 발달하여 염기성 매트릭스와 RM 표면사이의 계면에서 산-염기 상호작용 증가에 의한 계면결합력을 향상시켰다. 하지만, 5 M H3PO4 용액으로 처리한 RM에 대해서 경화거동과 열적성질의 한계적 감소가 관찰되었는데, 이것은 RM 표면에 에폭시 경화에 촉매로써 작용할 수 있는 금속 산화물 또는 산성그룹의 존재에 기인한다.
In this work, the effect of acidic surface treatment of red mud (RM) on the cure and thermal properties of epoxy/RM nanocomposites was investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The experimental results showed that the surface treantment of RM significantly improved the cure and thermal properties, which included glass transition temperature (Tg), cure rate, activation energy, and thermal stability of epoxy/RM composites. Also, the surface treatment led to an increase of interfacial bonding at the interfaces between basic matrix and acidic RM surface. This was due to the increased acidic functional group on RM surfaces, which resulted in the growth of acid-base interfacial interactions. However, only a marginal decrease in the cure and thermal properties was observed for the RM treated with 5 M H3PO4 solution. This was due to the presence of acidic groups or metal oxides on the RM surfaces that catalytically reacted with epoxide.
  1. Bauer RS, "Epoxy Resin Chemistry," Advances in Chemistry Series, No. 114, American Chemical Society, Washington DC (1979)
  2. Lee H, Nevile K, "Handbook of Epoxy Resins," McGraw-Hill, New York (1986)
  3. Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J, Polymer, 42(3), 879 (2001) 
  4. Griotheim K, Welch BJ, "Aluminium Smelter Technology," 2nd ed., 24, Verlag, Berlin (1983)
  5. Sglavo VM, Campostrini R, Maurina S, Carturan G, Monagheddu M, Budroni G, Cocco G, J. Eur. Ceram. Soc., 20, 235 (2000) 
  6. Apak R, Guclu K, Turgut MH, J. Colloid Interface Sci., 203(1), 122 (1998) 
  7. Atun G, Hisarli G, J. Colloid Interface Sci., 228(1), 40 (2000) 
  8. Pradhan J, Das J, Das S, Thakur RS, J. Colloid Interface Sci., 204(1), 169 (1998) 
  9. Chand N, Hashmi SAR, J. Sci. Ind. Res., 58, 795 (1999)
  10. Hashmi SA, Majumdar AK, Chand N, J. Mater. Sci. Lett., 15(15), 1343 (1996)
  11. May CA, "Epoxy Resins, Chemistry & Technology," 551, Marcel Dekker, New York (1988)
  12. Bidstrup SU, Macosko CW, J. Polym. Sci. B: Polym. Phys., 28, 691 (1990) 
  13. Park SJ, Seo MK, Lee JR, J. Appl. Polym. Sci., 79(12), 2299 (2001) 
  14. Park SJ, Donnet JB, J. Colloid Interface Sci., 206(1), 29 (1998) 
  15. Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000) 
  16. Cousin P, Smith P, J. Polym. Sci. B: Polym. Phys., 32(3), 459 (1994) 
  17. Barrett KE, J. Appl. Polym. Sci., 11, 1617 (1967) 
  18. Ozawa T, Bull. Chem. Soc. Jpn., 38, 1881 (1965) 
  19. Kissinger HE, J. Res. Nat. Bureau Stand., 57, 2712 (1956)
  20. Lee JY, Shim MJ, Kim SW, Thermochim. Acta, 371(1-2), 45 (2001) 
  21. Montserrat S, Flaque C, Pages P, Malek J, J. Appl. Polym. Sci., 56(11), 1413 (1995) 
  22. Ryan ME, Dutta A, Polymer, 20, 203 (1979) 
  23. Lee SN, Yuo WN, Polym. Eng. Sci., 27, 1317 (1987) 
  24. Kishore K, Joseph M, Dharumaraj V, Vijayshree MN, J. Appl. Polym. Sci., 31, 2829 (1986) 
  25. Kasparov SD, Afonin AN, Akutin MS, Petrov SS, Plast. Massy, 8, 24 (1978)
  26. Osgan M, Price CC, J. Am. Chem. Soc., 78, 690 (1956) 
  27. Horowitz HH, Metzger G, Anal. Chem., 35, 1464 (1963) 
  28. Park SJ, Kim TJ, Lee JR, J. Polym. Sci. B: Polym. Phys., 38(16), 2114 (2000)