Journal of the Korean Industrial and Engineering Chemistry, Vol.12, No.8, 877-882, December, 2001
Poly(vinyl chloride)/Red Mud 나노복합재료의 열안정성 및 기계적 물성에 관한 연구
Study on Thermal Stability and Mechanical Properties of Poly(vinyl chloride)/Red Mud Nanocomposites
E-mail:
초록
본 연구에서는 poly(vinyl chloride) (PVC)/red mud (RM)나노복합재료의 RM함량이 초기 열분해 온도(IDT), 분해 활성화 에너지(Et), 인열에너지(Gmc), 그리고 인장강도(TS)에 미치는 영향을 고찰하였다. RM은 0, 3, 5, 10, 15, 20 phr로 함량을 달리하여 PVC수지에 함침시켰다. 또한, 화학적 표면처리의 효과를 알아보기 위해 화학적으로 표면처리된 5 phr RM (ARM, BRM)이 함침된 PVC/RM나노복합재료를 제조하였다. 그 결과, IDT, Et, Gmc, Ts 값은 RM의 함량이 증가할수록 증가하였다. 그러나 5 phr이상의 함량에서는 Et와 Ts가 부가된 RM의 응집으로 인해 더 이상 증가하지 않았다. PVC/ARM과 PVC/BRM 나노복합재료 내에 함침된 RM은 산염기 표면처리로 물리적 구조의 변화를 가져왔으며, 이러한 특징은 SEM을 통해 고찰하였다. RM 표면에 발달한 염기성 관능기로 인해 PVC/BRM 나노복합재료가 다른 나노복합재료보다 더 높은 IDT, Et, Gmc, Ts 값을 가졌다. 이는 BRM과 산성 PVC사이의 산-염기 계면 상호작용에 의한 결과로 사료된다.
In this work, the effect of different contents of red mud (RM) for PVC/RM nanocomposites was investigated in terms of initial decomposition temperature (IDT), decomposition activation energy (Et), tearing energy (G(IIIC)), and tensile strength (TS). RM was impregnated with PVC resin in contents of 0, 3, 5, 10, 15, 20 phr RM. Also, 5 phr RM-impregnated PVC/RM nanocomposites were prepared to study the effect of chemical surface treatment on RM. The results showed that IDT, Et, G(IIIC), and TS were all increased with increasing content of RM. However, at above 5 phr loading, G(IIIC) and TS no further increase because of the aggregation by the additional RM in the composites. Acid(ARM)/base(BRM) chemical theatments on RM caused a significant change in RM morphology, as examined by scanning electron microscopy (SEM). PVC/BRM nanocomposites had higher IDT, Et, G(IIIC), and TS values, than those of PVC/RM or PVC/ARM, because of the enhanced basic functional groups of RM surface. These results were probably due to the acid-base interfacial interactions between RM and acidic PVC.
- Ma WG, Lamantia FP, J. Appl. Polym. Sci., 59(5), 759 (1996)
- Pena JR, Hidalgo M, Mijangos C, J. Appl. Polym. Sci., 75(10), 1303 (2000)
- Wirth HO, Andreas H, Pure Appl. Chem., 47, 627 (1977)
- Dompas D, Groeninckx G, Isogawa M, Hasegawa T, Kadokura M, Polymer, 36(2), 437 (1995)
- Bataille P, Degrendele C, Schreiber HP, J. Vinyl Technol., 11, 81 (1989)
- Guo SY, Ning Y, J. Polym. Sci. B: Polym. Phys., 37(20), 2828 (1999)
- Bataille P, Mahlous M, Schreiber HP, Polym. Eng. Sci., 30, 981 (1994)
- Ulkem L, Bataille P, Schreiber HP, Pure Appl. Chem., 34, 291 (1994)
- Baltazar MAP, Elisabeth ECM, Dweck J, Polym. Testing, 20, 269 (2001)
- Hind AR, Suresh BK, Stephen GC, Colloids Surf., 146, 359 (1999)
- Gupta VK, Gupta M, Sharma S, Water Res., 35, 1125 (2001)
- Ordonez S, Sastre H, Diez FV, Appl. Catal. B: Environ., 29(4), 263 (2001)
- Chand N, Hashmi SAR, J. Sci. Ind. Res., 58, 795 (1999)
- Knox CE, "Handbook of Composites," ed. G. Lubin, van Nostrand Reinhold, New York (1982)
- Schwartz MM, "Composite Materials Handbook," McGraw-Hill, New York (1992)
- Park SJ, "Interfacial Forces and Fields: Theory and Applications," ed. J.P. Hsu, Marcel Dekker, New York, 1999 (1999)
- Rio CD, Ojeda MC, Acosta JL, Eur. Polym. J., 36, 1687 (2000)
- Park SJ, Kim MH, Lee JR, Choi S, J. Colloid Interface Sci., 228(2), 287 (2000)
- Frysz CA, Chung DDL, Carbon, 35, 1111 (1997)
- Park SJ, Kim JS, J. Colloid Interface Sci., 239(2), 380 (2001)
- Ahmadi NS, Khonsari FA, Amouroux J, J. Mater. Chem., 5, 229 (1995)
- Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001)
- Boehm HP, Adv. Catal., 16, 178 (1966)
- Horowiyz HH, Metzger G, Anal. Chem., 35, 1464 (1963)
- Greensmith HW, J. Appl. Polym. Sci., 3, 183 (1960)
- Park SJ, Kim JS, J. Colloid Interface Sci., 232(2), 311 (2000)
- Berg JC, "Wettability," ed. J.C. Berg, Marcel Dekker, New York (1993)
- Schreiber HP, Richard C, Wertheimer RM, "Physico-chemical Aspects of Polymer Surfaces," ed. K.L. Mittal, Plenum Press, New York (1983)
- Agag T, Koga T, Takeichi T, Polymer, 42(8), 3399 (2001)