화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.28, No.1, 1-10, February, 1990
황화 CoMo/Υ-Al2O3 촉매상에서 탈활반응과 탈산소반응의 상호작용
Interactions between Hydrodesulfurization and Hydrodeoxygenation over Sulfided CoMo/Υ-Al2O3 Catalyst
초록
황화 CoMo/Υ-Al2O3 촉매를 사용하여 423-723K의 온도와 10×105-50×105Pa 압력 그리고 접촉시간 0.0125-0.03g-cat. hr/ml-feed 범위에서 thiophene 의 수첨탈활반응과 m-cresol에 의해 수첨탈산소반응의 상호작용 및 그 속도론에 관하여 연구하였다. 연구결과 thiophene의 수첨탈황반응은 모두 온도, 압력범위에서 m-cresol에 의해 억제되었으며, 억제 효과는 저온에서 더 현저했다. Thiophene의 수첨탈황반응속도식 및 m-cresol의 수첨탈산소반응속도식을 LHHW모델을 이용하여 구한 결과 ΥHDOㆍKcㆍCc/(1+KcㆍCc+KrㆍCr), ΥHDS=kHDSㆍKtㆍCt/(1+KcㆍCc+KtㆍCt)이었다. 각 온도에서 반응속도상수 및 흡착평형상수를 구하였으며 Arrhenius plot을 행하여 구한 활성화에너지 값은 m-cresol과 thiophene이 각각 17.79kcal/mole, 13.51kcal/mole이었다.
Interactions between thiophene hydrodesulfurization(HDS) and m-cresol hydrodeoxygenation (HDO) and the kinetic analysis were studied over sulfided CoMo/γ-Al2O3 catalyst at the range of temperatures between 423K and 723K, the total pressures between 10×105Pa and 50×105Pa and the contact times between 0.0125g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. Hydrodesulfurization of thiophene was inhibited by the presence of m-cresol at all temperatures and pressures and hy-drodeoxygenation of m-cresol was also inhibited by the presence of m-cresol at all temperatures and pressures but inhi-bition effect was severer at low temperatures. The rate equations of thiophene and m-cresol was given to be HDS=kHDSㆍKTㆍCT/(1+KCㆍCC+KTㆍCT)andγHDO=kHDOㆍKCㆍKC/(1+KCㆍCC+KTㆍCT) in terms of Langmuir -Hinshelwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and the activation energies of thiophene HDS andm-cresol HDO were 13.51kcal/mole and 17.79kcal/mole, respectively.
  1. Krishnamurthy S, Panvelker S, Shah YT, AIChE J., 27(6), 994 (1981) 
  2. Satterfield CN, Cocchetto JF, Ind. Eng. Chem. Process Des. Dev., 20(1), 53 (1981) 
  3. Bartsch R, Taniellian C, J. Catal., 3, 353 (1974)
  4. Aubert C, Durand R, Geneste P, Moreau C, J. Catal., 97, 169 (1986) 
  5. Satterfield CN, "Heterogeneous Catalysis in Practice," McGraw-Hill, N.Y., 265 (1980)
  6. Weisz PB, Prater CD, Adv. Catal., 6, 143 (1954)
  7. Wikens JA, Ind. Eng. Chem. Process Des. Dev., 19, 154 (1980) 
  8. Odebunmi EO, Ollis DF, J. Catal., 80, 56 (1983) 
  9. Kallury RKR, Wanda MR, Thomas TT, Boocock DGB, Crimi A, J. Catal., 96, 35 (1985) 
  10. Satterfield CN, Gultekin S, Ind. Eng. Chem. Process Des. Dev., 20(1), 62 (1981) 
  11. Singhal GH, Espino RL, Sobel JE, J. Catal., 67, 446 (1981) 
  12. Lee CL, Ollis DF, J. Catal., 87, 325 (1984) 
  13. Kilanowski DR, Gates BC, J. Catal., 62, 70 (1980) 
  14. Kim KL, Choi KS, Ind. Chem. Eng., 27(2), 340 (1987)
  15. Lee CL, Ollis DF, J. Catal., 87, 332 (1984) 
  16. Odebunmi EO, Ollis DF, J. Catal., 80, 65 (1983) 
  17. Masatoshi N, Toshiaki K, J. Catal., 81, 440 (1983) 
  18. Odebunmi EO, Ollis DF, J. Catal., 80, 76 (1983) 
  19. Satterfield CN, Shah HY, J. Catal., 81, 33 (1983)
  20. Satterfield CN, Robert GW, AIChE J., 14(1), 159 (1968) 
  21. Schurt GCA, Gates BC, AIChE J., 19, 417 (1973) 
  22. Kim KL, Choi KS, Lee HS, Proceedings of the 4th ROK/ROC Joint Workshop on Catalysis, 75 (1987)
  23. Satterfield CN, Smith CM, Ind. Eng. Chem. Process Des. Dev., 25(4), 942 (1986) 
  24. Satterfield CN, Yang SH, Ind. Eng. Chem. Process Des. Dev., 23(1), 20 (1984) 
  25. Goudrian F, Thesis, Twente Univ. of Tech., Enschede, The Netherlands (1974)
  26. Massoth FJ, J. Catal., 47, 316 (1977) 
  27. Lee HC, Butt JB, J. Catal., 67, 457 (1981) 
  28. Gopal HS, Ramon LE, Jay Es, J. Catal., 67, 457 (1981) 
  29. Furimsky E, Mikhlin JA, Adley T, Can. J. Chem. Eng., 64, 982 (1986)
  30. LePage FF, "Applied Heterogeneous Catalysis," Techniq., IFP, Paris, 394-396 (1978)