화학공학소재연구정보센터
Langmuir, Vol.17, No.21, 6585-6592, 2001
A peptide-tethered lipid bilayer on mercury as a biomimetic system
A novel spacer consisting of a hexapeptide molecule with a high tendency to form a 3(10)-helical structure, which terminates with a sulfydryl group for anchoring to a metal, was tailored for use as a tethered hydrophilic spacer to be interposed between a metal support and a lipid bilayer. The thiol peptide has two triethylenoxy side chains that impart it a satisfactory hydrophilicity and are intended to keep the anchored thiol peptide chains sufficiently apart so as to accommodate water molecules and inorganic ions and to create a suitable environment for the incorporation of integral proteins. This thiol peptide was anchored to a hanging mercury drop electrode. The formation of a phospholipid bilayer on top of the self-assembled thiol peptide was carried out by a novel procedure which exploits the spontaneous tendency of a lipid film to form a bilayer when interposed between two hydrophilic phases. The resulting mercury-supported thiol peptide/lipid bilayer system was characterized by ac voltammetry with phase resolution, chronocoulometry, and impedance spectroscopy. The suitability of this tethered film as a biomembrane model was tested by incorporating ubiquinone-10 and valinomycin.