화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.28, No.5, 602-611, October, 1990
역삼투용 CA-CTA 혼합막의 제조 및 투과특성에 관한 연구
A study on the Preparation of CA-CTA Blended Membrane and Separation Characteristics for Reverse Osmosis Process
초록
습식법에 의해 역삼투용 CA-CTA 혼합막을 제조하여 그 투과특성을 조사한 후, 상업용 CA막 및 동일한 조건하에서 제조된 CA 막과 비교하였다. 혼합막의 제조조건으로는 고분자의 조성이 CA 8wt%, CAT8wt%이고 증발시간을 60초로 하여 제조한 막이 가장 우수한 배제율을 나타내었고, 고분자의 조성이 낮아질수록 배제율이 떨어지는 반면 투과량은 증가하였다. 혼합막과 CA막의 성능을 비교한 결과, 고분자의 조성이 16wt%이고 증발시간이 60초인 막이 상업용 CA막 및 동일 조건하에서 실험실적으로 제조된 CA막보다 고압에서 더 높은 배제율을 보였으며, 고분자의 조성이 16wt%이고 증발시간이 30초인 막은 비슷한 배제율에서 더 많은 투과량을 나타내었다. 본 연구에서 제조한 막에 대한 1/R 과 1/Jv를 도식화하였을 때, 제조한 모든 막들이 Pusch의 선형모델에 잘 적용되었으며, 고분자의 조성이 10wt%로 가장 낮은 막을 제외하고는 용액-확산모델에도 잘 적용되었다.
CA-CTA blended membranes for reverse osmosis were prepared by wet-process and tested for the pur-pose of determining the separation characteristics. The characteristics of these membranes were compared with those of CA-membrane made at the same condition and commercial it. Considering the effect for the solution composition of blended membranes, the membrane which had 16wt% polymer content in the casting solution exhibited highest rejection coefficient. Experimental results showed that rejec-tion coefficient was decreased but permeate was increased with the decreasing of polymer content. With the result of comparison of blended membranes and CA-membranes, the blended membrane which had 16wt% polymer content and 60 seconds evaporation period had higher rejection coefficient than commercial and prepared CA-membranes. When plotting of 1/R vs. 1/Jv for membranes, data followed the Pusch’s linear model and solution-diffusion model except the lowest polymer composition membrane within experimental boundary.
  1. Mears P, "Membrane Separation Processes," Elsevier Scientific Publishing Co., Chap. 1, 2 (1976)
  2. Sourirajan S, "Reverse Osmosis," Academic Press (1970)
  3. Sourirajan S, Matsuura T, "Reverse Osmosis/Ultrafiltration Process Principles," National Research Council of Canada (1985)
  4. Sourirajan S, "Reverse Osmosis and Synthetic Membranes," National Research Council of Canada, Chap. 1, 2 (1977)
  5. Strathmann H, Scheible P, Baker BW, J. Appl. Polym. Sci., 15, 811 (1971) 
  6. Kesting RE, "Synthetic Polymeric Membranes," 2nd ed., John Wiley & Sons (1985)
  7. Joshi SV, Desalination, 38, 349 (1981) 
  8. Kesting RE, "Synthetic Polymeric Membranes," McGraw-Hill, New York (1971)
  9. Bungay PM, Lonsdale HK, dePinho MN, "Synthetic Membranes: Science, Engineering and Applications," D. Reidel Publishing Co., Chap. 2, 39 (1983)
  10. Bokhorst H, Altena FW, Smolders CA, Desalination, 38, 349 (1981) 
  11. Lonsdale HK, Merten V, Riley RL, J. Appl. Polym. Sci., 9, 134 (1965)
  12. Katchalsky A, Curran PF, "Nonequlibrium Thermodynamics in Biophysics," Harvard Univ. Press (1965)
  13. Pusch W, Ber Bunserges Phys. Chem., 81(3), 269 (1977)
  14. Pusch W, Ber Bunserges Phys. Chem., 81(3), 864 (1977)
  15. Kunst B, Sourirajan S, J. Appl. Polym. Sci., 14, 723 (1970) 
  16. Sedlacek B, Kahovec J, "Synthetic Polymeric Membranes," Walter de Gruyter, Berlin New York (1987)
  17. Koenhen DM, Muder MHV, Smolders CA, J. Appl. Polym. Sci., 14, 1317 (1971)