HWAHAK KONGHAK, Vol.28, No.5, 602-611, October, 1990
역삼투용 CA-CTA 혼합막의 제조 및 투과특성에 관한 연구
A study on the Preparation of CA-CTA Blended Membrane and Separation Characteristics for Reverse Osmosis Process
초록
습식법에 의해 역삼투용 CA-CTA 혼합막을 제조하여 그 투과특성을 조사한 후, 상업용 CA막 및 동일한 조건하에서 제조된 CA 막과 비교하였다. 혼합막의 제조조건으로는 고분자의 조성이 CA 8wt%, CAT8wt%이고 증발시간을 60초로 하여 제조한 막이 가장 우수한 배제율을 나타내었고, 고분자의 조성이 낮아질수록 배제율이 떨어지는 반면 투과량은 증가하였다. 혼합막과 CA막의 성능을 비교한 결과, 고분자의 조성이 16wt%이고 증발시간이 60초인 막이 상업용 CA막 및 동일 조건하에서 실험실적으로 제조된 CA막보다 고압에서 더 높은 배제율을 보였으며, 고분자의 조성이 16wt%이고 증발시간이 30초인 막은 비슷한 배제율에서 더 많은 투과량을 나타내었다. 본 연구에서 제조한 막에 대한 1/R 과 1/Jv를 도식화하였을 때, 제조한 모든 막들이 Pusch의 선형모델에 잘 적용되었으며, 고분자의 조성이 10wt%로 가장 낮은 막을 제외하고는 용액-확산모델에도 잘 적용되었다.
CA-CTA blended membranes for reverse osmosis were prepared by wet-process and tested for the pur-pose of determining the separation characteristics. The characteristics of these membranes were compared with those of CA-membrane made at the same condition and commercial it. Considering the effect for the solution composition of blended membranes, the membrane which had 16wt% polymer content in the casting solution exhibited highest rejection coefficient. Experimental results showed that rejec-tion coefficient was decreased but permeate was increased with the decreasing of polymer content. With the result of comparison of blended membranes and CA-membranes, the blended membrane which had 16wt% polymer content and 60 seconds evaporation period had higher rejection coefficient than commercial and prepared CA-membranes. When plotting of 1/R vs. 1/Jv for membranes, data followed the Pusch’s linear model and solution-diffusion model except the lowest polymer composition membrane within experimental boundary.
- Mears P, "Membrane Separation Processes," Elsevier Scientific Publishing Co., Chap. 1, 2 (1976)
- Sourirajan S, "Reverse Osmosis," Academic Press (1970)
- Sourirajan S, Matsuura T, "Reverse Osmosis/Ultrafiltration Process Principles," National Research Council of Canada (1985)
- Sourirajan S, "Reverse Osmosis and Synthetic Membranes," National Research Council of Canada, Chap. 1, 2 (1977)
- Strathmann H, Scheible P, Baker BW, J. Appl. Polym. Sci., 15, 811 (1971)
- Kesting RE, "Synthetic Polymeric Membranes," 2nd ed., John Wiley & Sons (1985)
- Joshi SV, Desalination, 38, 349 (1981)
- Kesting RE, "Synthetic Polymeric Membranes," McGraw-Hill, New York (1971)
- Bungay PM, Lonsdale HK, dePinho MN, "Synthetic Membranes: Science, Engineering and Applications," D. Reidel Publishing Co., Chap. 2, 39 (1983)
- Bokhorst H, Altena FW, Smolders CA, Desalination, 38, 349 (1981)
- Lonsdale HK, Merten V, Riley RL, J. Appl. Polym. Sci., 9, 134 (1965)
- Katchalsky A, Curran PF, "Nonequlibrium Thermodynamics in Biophysics," Harvard Univ. Press (1965)
- Pusch W, Ber Bunserges Phys. Chem., 81(3), 269 (1977)
- Pusch W, Ber Bunserges Phys. Chem., 81(3), 864 (1977)
- Kunst B, Sourirajan S, J. Appl. Polym. Sci., 14, 723 (1970)
- Sedlacek B, Kahovec J, "Synthetic Polymeric Membranes," Walter de Gruyter, Berlin New York (1987)
- Koenhen DM, Muder MHV, Smolders CA, J. Appl. Polym. Sci., 14, 1317 (1971)