화학공학소재연구정보센터
Journal of Materials Science, Vol.36, No.23, 5585-5588, 2001
Investigation on defects in HPHT-grown diamond single crystals
In the diamond single crystals synthesized at high temperature and high pressure using FeNi as catalyst, there are usually supersaturated vacancies and inclusions formed during the diamond crystal growth and rapid cooling from high temperature. Some defects such as prismatic dislocation loops, stacking faults and array of dislocations are closely related to such supersaturated vacancies and inclusions. The supersaturated vacancies agglomerate into discs on the (111) close-packed planes, subsequent collapse of the discs forms the dislocation loops and stacking faults. The thermal internal stresses, which are caused by the difference of thermal contraction between the diamond and the inclusions due to the difference of thermal coefficients between them as the diamond is cooled from high temperature, may be relieved by the formation of array of dislocations. In the present paper, these defects in the diamond single crystals were directly examined by transmission electron microscopy (TEM). The characteristics and formation process of these defects were analyzed briefly.