화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.214, No.2, 407-415, 1999
Effect of surface characteristics of wood-based activated carbons on adsorption of hydrogen sulfide
Three wood-based commercial activated carbons supplied by Westvaco were studied as adsorbents of hydrogen sulfide. The initial materials were characterized using sorption of nitrogen, Boehm titration, potentiometric titration, water sorption, thermal analysis, and temperature-programmed desorption. The breakthrough tests were done at low concentrations of H2S in the input gas to simulate conditions in water pollution control plants where carbon beds are used as odor adsorbents. In spite of apparent general similarities in the origin of the materials, method of activation, surface chemistry, and porosity, significant differences in their performance as hydrogen sulfide adsorbents were observed. Results show that the combined effect of the presence of pores large enough to accommodate surface functional groups and small enough to have the film of water at relatively low pressure contributes to oxidation of hydrogen sulfide. Moreover, there are features of activated carbon surfaces such as local environment of acidic/basic groups along with the presence of alkali metals which are important to the oxidation process,