화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.228, No.1, 18-23, 2000
Effect of interfacial alcohol concentrations on oil solubilization by sodium dodecyl sulfate micelles
Alcohol partitioning and its effect on oil solubilization in Winsor Type I microemulsion systems was investigated. The microemulsion systems consisted of sodium dodecyl sulfate (SDS), pentanol, isopropanol (IPA), and dodecane, with either deionized water or an aqueous solution of 50 mM CaCl2. Alcohol partitioning between aqueous, oil, and interfacial phases of the microemulsion was described using a pseudophase model in which the alcohol was assumed to self-associate in the oil phase. Partitioning in these miroemulsions was consistent with pentanol self-association in the oil phase. IPA did not self-associate but co-associated with pentanol in the oil phase. IPA concentrations as high as 20 g/kg of water had no effect on pentanol partitioning. The partition coefficient for pentanol between aqueous and interfacial phases was about 220 on a mole fraction basis. However, pentanol saturated the interfacial phase at a mole ratio of 3 : 1 pentanol to SDS. Addition of pentanol beyond that sufficient to saturate the interface resulted in large amounts of pentanol partitioning into the oil, reaching concentrations in excess of 25 g dL(-1) of oil phase. Dodecane solubilization increased linearly with pentanol mole fraction in the interface up to the 3:1 pentanol-to-SDS saturation level. The fact that dodecane solubilization was unaffected by pentanol at concentrations beyond those necessary for interfacial saturation suggests that pentanol behaves as a cosurfactant and not a cosolvent in these microemulsion systems,