화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.231, No.1, 52-58, 2000
Relaxation spectra and viscoelastic behavior of a model hydrophobically modified alkali-soluble emulsion (HASE) polymer in salt/SDS solutions
The viscoelastic behavior of a semidilute hydrophobically modified alkali-soluble emulsion (HASE)-C20 polymer in NaCl and NaCl/SDS (sodium dodecyl sulfate) solutions was determined using a Rheometric fluids rheometer and the data were converted to relaxation spectra. The dynamic moduli can be fitted with a multiple modes Maxwell model. In the presence of increasing amounts of NaCl, the moduli decrease, where G', decreases more rapidly than G ". However, in the presence of SDS and 0.4 M NaCl, the dynamic moduli increase to a maximum at a critical concentration and decrease thereafter. The relaxation spectra suggest that the structure of the polymer network is complex and it contains two to six relaxation times, depending on the NaCl or SDS/0.4 M NaCl concentrations. With increasing NaCl concentrations, the fastest peak shifts to longer times while the slowest peak decreases. This corresponds to the destruction of the network as the polymer backbone collapses to form clusters with a larger aggregation number. For HASE in SDS/0.4 M NaCl solutions, the lifetime of both the hydrophobic junction (fastest peak) and network relaxation (slowest peak) shift to longer times, which suggests the strengthening of active junctions by bound SDS molecules. However, beyond a critical SDS concentration, the relaxation time of the polymer and hydrophobic junction decreases to an asymptotic value.