화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.238, No.2, 291-295, 2001
Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica
Mesoporous silica with gold nanoparticles inside its pores was prepared by the soaking and ultrasound-induced reduction method. This new composite was characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and high-resolution transmission electron microscopy (HRTEM) techniques. The results showed that nearly spherical-shaped gold nanoparticles, with mean size in diameter of 5.2 nm, are located in the pores, most of which are less than 6 nm in diameter. The ultrasonic irradiation time dependence of optical absorption for the soaked porous solid sample, as suggested by the variation in absorbance at 310 and 544 nm, indicated the reduction of Au (III) ions, and the nucleation and aggregation of gold nanoparticles within pores of mesoporous silica. Additionally, the reaction rates estimated phenomenologically by the absorbance decay at 310 nm for both the porous sample and the corresponding soaking solution presented the enhancement of the sonochemical reduction rate of Au (III) ions within pores of mesoporous silica. It is assumed that the extensive liquid-solid interfacial zones in the pores, due to the high specific surface areas and great porosity of the mesoporous solid, are the major regions where the efficient sonochemical reduction induced by the cavitation takes place.