Electrochimica Acta, Vol.46, No.28, 4339-4348, 2001
Surface modification and electrocatalytic properties of Pt(100), Pt(110), Pt(320) and Pt(331) electrodes with Sb towards HCOOH oxidation
Behaviors of irreversibly adsorbed Sb adatoms on Pt(100), Pt(110), Pt(320) and Pt(331) single crystal surfaces and electrocatalytic properties of the modified electrodes towards formic acid oxidation were investigated. It was determined that Sb adatoms are stable at potentials below 0.45 V (SCE) on Pt(100) and Pt(110), below 0.40 V on Pt(320), and below 0.35 V on Pt(331). Different coverage of Sb-ad was obtained conveniently by partially stripping Sb-ad from saturation coverage of Sb-ad. It has demonstrated that the redox behaviors of Sb adatoms and the coadsorption properties of Sb-ad with H-ad depend strongly on the orientations of the Pt single crystal electrode. Significant catalytic effects towards HCOOH oxidation were observed on Pt single crystal electrodes modified with Sb adatoms, which consist of (1) the inhibition of dissociative adsorption of HCOOH, (2) the enhancement of oxidation current, and (3) the negative shift of oxidation potential that was measured about 220 mV on Pt(110)/Sb, 110 mV on (110) sites of Pt(320)/Sb, and 100 mV on Pt(331)/Sb electrode. Neither enhancement of oxidation current nor negative shift of oxidation potential can be observed on Pt(,100)/Sb electrode. The results suggested that electronic effect is the main effect presented on Pt(110), Pt(320) and Pt(331) surface upon Sb modification, while geometric effect is considered to the major effect on Pt(M) electrode.