화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.39, No.6, 777-782, December, 2001
CH3COONa·3H2O-based PCM과 유기물 PCM의 열 저장 특성에 관한 비교 연구
A Study on Heat Storage Characteristics of CH3COONa·3H2O-based PCM and Organic PCM
E-mail:
초록
본 연구에서는 가정용 잠열저장시스템에 적용하기 위하여 잠열축열재로 CH3COONa·3H2O를 주잠열재로 사용하고, CMC-Na(carboxymethyl cellulose-Na)와 고흡수성 고분자(super-absorbent polymer)를 증점제로 사용한 시료에 대해, 여러 가지 물질들에 대한 조핵 능력을 조사하였고, 안정적인 열저장 특성을 보인 시료에 대한 장기 사이클 실험을 수행하였다. 또한 유기물 PCM(phase change material)으로는 stearic acid에 대한 열저장 특성을 조사하였다. CH3COONa·3H2O의 경우 조핵제로 Na4P2O7·10H2O, 증점제로 SAP와 CMC-Na를 사용할 경우 과냉각 및 상분리 문제를 해결할 수 있었지만, 200회의 장기 성능 실험 후에는 과냉각 및 상분리 현상이 나타났다. 유기물 PCM은 공업용과 시약용 stearic acid에 대해 15 사이클 실험을 수행하였으며, 공업용 시료에 대해 300 사이클 동안의 열저장 특성을 조사한 결과, 안정적인 열저장 특성을 보였다.
The heat storage and release characteristics of CH3COONa·3H2O as the main PCM(Phase Change Material) and CMC-Na, SAP(super-absorbent polymer) as the thickener were investigated to apply them to the house heating system. Several materials were added as the nucleating agent. The samples showing the adequate heat storage characteristics were further tested in the long-term cycle of heat storage and release. As an organic phase change material, stearic acid was also investigated. It was found that the phase separation and supercooling problems of the CH3COONa·3H2O were solved by adding Na4P2O7·10H2O as the nucleating agent and SAP, CMC-Na as the thickener. However, supercooling and phase separation problems appeared after the 200th thermal cycle. Commercial-grade and extra pure-grade stearic acids were investigated as the organic PCM during 15 thermal cycle. Commercial-grade stearic acid showed relatively stable heat storage characteristics during 300 cycling test.
  1. Schroder J, Gawron K, Energy Res., 5, 103 (1981)
  2. Hasnain SM, Energy Conv. Manag., 39(11), 1127 (1998) 
  3. Telkes M, Sol. Energy Mater., 2, 381 (1980) 
  4. Lane GA, "Solar Heat Storage: Latent Heat Materials, Technology," CRC Press, Boca Raton, 2 (1986)
  5. Kim JK, Yoon WS, Jung KT, Shul YG, Joo HK, Jeon MS, Lee TK, HWAHAK KONGHAK, 37(2), 151 (1999)
  6. Abhat A, Sol. Energy, 30(4), 313 (1983) 
  7. Wada T, Yamamoto R, Matsuo Y, Sol. Energy, 33(3), 373 (1984) 
  8. Choi JC, Kim SD, Han GY, Korean J. Chem. Eng., 12(2), 258 (1995)
  9. Kimura H, Kai J, Sol. Energy, 35(6), 527 (1985) 
  10. Song HK, Ryou YS, Sol. Energy, 11(3), 53 (1991)
  11. Ryu HW, Woo SW, Shin BC, Kim SD, Sol. Energy Mater. Sol. Cells, 27, 161 (1992) 
  12. Lee MH, Song YS, Rhee YW, Oh IH, HWAHAK KONGHAK, 38(3), 429 (2000)
  13. Feldman D, Shapiro MM, Banu D, Fuks CJ, Sol. Energy Mater., 18, 201 (1989) 
  14. Buddhi D, Sharma SD, Energy Conv. Manag., 40(18), 1979 (1999) 
  15. Feldman D, Banu D, Hawes D, Sol. Energy Mater. Sol. Cells, 36, 311 (1995) 
  16. Sharma SD, Buddhi D, Sawhney RL, Sol. Energy, 66(6), 483 (1999)