화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.13, No.4, 197-203, December, 2001
Electrorheology and universal yield stress function of semiconducting polymer suspensions
E-mail:
We reported on the eletrorheological (ER) properties of several semiconducting polymers including poly (p-phenylene) (PPP), poly (acene quinone) radicals (PAQRs), microencapsulated polyaniline (MPANI) and polyaniline (PANI) those we synthesized. The yield stress dependence on electric field strength for the ER fluids using these semiconducting polymers was mainly examined. The yield stress, which is an important design parameter for ER fluids, was observed to satisfy a universal scaling function, allowing that yield stress data for all the ER fluids examined in this study collapse onto a single curve for a broad range of electric field strengths. The proposed scaling function incorporates both the polarization and conductivity models.
  1. Block H, Kelly JP, Qin A, Waston T, Langmuir, 6, 6 (1990) 
  2. Bloodworth R, Electrorheological Fluids, Mechanisms, Properties, Technology and Applications, World Scientific, Singapore, 67 (1994)
  3. Cho MS, Choi HJ, To K, Macromol. Rapid Commun., 19, 271 (1998)
  4. Choi HJ, Cho MS, Jhon MS, Polym. Adv. Technol., 8, 697 (1997) 
  5. Choi HJ, Lee JH, Cho MS, Jhon MS, Polym. Eng. Sci., 39(3), 493 (1999) 
  6. Choi HJ, Lee YH, Kim CA, Jhon MS, J. Mater. Sci. Lett., 19(6), 533 (2000) 
  7. Choi HJ, Kim JW, To KW, Polymer, 40(8), 2163 (1999) 
  8. Choi HJ, Cho MS, Kim JW, Kim CA, Jhon MS, Appl. Phys. Lett., 78, 3806 (2001) 
  9. Chu SH, Lee SJ, Ahn KH, J. Rheol., 44(1), 105 (2000) 
  10. Conrad H, Wu CW, Tang X, Intl. J. Mod. Phys. B, 13, 1729 (1999) 
  11. Davis LC, J. Appl. Phys., 81, 1985 (1997) 
  12. Duan X, Chen H, He Y, Luo W, J. Phys. D: Appl. Phys., 33, 696 (2000) 
  13. Grem G, Leditzky G, Ullrich B, Leising G, Adv. Mater., 4, 36 (1992) 
  14. Grem G, Martin V, Meghdadi F, Paar C, Stampfl J, Sturm J, Tasch S, Leising G, Synth. Met., 2193 (1995)
  15. Goldenberg LM, Lacaze PC, Synth. Met., 58, 271 (1993) 
  16. Gonon P, Foulc JN, Atten P, Boissy C, J. Appl. Phys., 86, 7160 (1999) 
  17. Goodwin JW, Markham GM, Vincent B, J. Phys. Chem. B, 101(11), 1961 (1997) 
  18. Gow CJ, Zukoski CF, J. Colloid Interface Sci., 136, 175 (1989)
  19. Gulley GL, Tao R, Phys. Rev. E, 56, 4328 (1997) 
  20. Ha JW, Moon JH, Yang SM, Korea-Aust. Rheol. J., 11(3), 241 (1999)
  21. Kim JW, Kim SG, Choi HJ, Jhon MS, Macromol. Rapid Commun., 20, 450 (1999) 
  22. Kim JW, Noh MH, Choi HJ, Lee DC, Jhon MS, Polymer, 41(3), 1229 (2000) 
  23. Kim JW, Choi HJ, Yoon SH, Jhon MS, Int. J. Mod. Phys. B, 15, 634 (2001) 
  24. Kim SG, Kim JW, Jang WH, Choi HJ, Jhon MS, Polymer, 42(11), 5005 (2001) 
  25. Kovacic P, Oziomek J, J. Am. Chem. Soc., 85, 454 (1962) 
  26. Kovacic P, Jones MB, Chem. Rev., 87, 357 (1987) 
  27. Lee HJ, Chin BD, Yang SM, Park OO, J. Colloid Interface Sci., 206(2), 424 (1998) 
  28. Park JH, Lim YT, Park OO, Macromol. Rapid Commun., 22, 616 (2001) 
  29. Parthasarathy M, Klingenberg DJ, Mater. Sci. Eng., R17, 57 (1996) 
  30. Phol HA, Engelhardt EH, J. Phys. Chem., 66, 2085 (1962)
  31. Plocharski J, Rozanski M, Wycislik H, Synth. Met., 102, 1354 (1999) 
  32. See H, Korea-Aust. Rheol. J., 11(3), 169 (1999)
  33. See H, J. Phys D: Appl. Phys., 33, 1623 (2000)
  34. Sim IS, Kim JW, Choi HJ, Kim CA, Jhon MS, Chem. Mater., 13, 1243 (2001) 
  35. Schluter AD, Wegner G, Acta Polym., 44, 59 (1993) 
  36. Tang X, Wu C, Conrad H, J. Rheol., 39(5), 1059 (1995) 
  37. Tang X, Wu C, Conrad H, J. Appl. Phys., 78, 4183 (1995) 
  38. Tao R, Jiang Q, Phys. Rev. Lett., 73, 205 (1994) 
  39. Wen W, Wang N, Tam WY, Sheng P, Appl. Phys. Lett., 71, 2529 (1997) 
  40. Wu CW, Conrad H, J. Phys. D, 29, 3147 (1996) 
  41. Wu CW, Conrad H, Phys. Rev. E, 56, 5789 (1997) 
  42. Wu CW, Conrad H, Intl. J. Mol. Phys. B, 13, 1713 (1999)