화학공학소재연구정보센터
Journal of Chemical Physics, Vol.116, No.1, 1-7, 2002
An adaptive, kink-based approach to path integral calculations
A kink-based expression for the canonical partition function is developed using Feynman's path integral formulation of quantum mechanics and a discrete basis set. The approach is exact for a complete set of states. The method is tested on the 3x3 Hubbard model and overcomes the sign problem seen in traditional path integral studies of fermion systems. Kinks correspond to transitions between different N-electron states, much in the same manner as occurs in configuration interaction calculations in standard ab initio methods. The different N-electron states are updated, based on which states occur frequently during a Monte Carlo simulation, giving better estimates of the true eigenstates of the Hamiltonian.