화학공학소재연구정보센터
Journal of Chemical Physics, Vol.116, No.2, 608-616, 2002
Ab initio spin-orbit CI calculations of the potential curves and radiative lifetimes of low-lying states of lead monofluoride
The electronic structure of the lead monofluoride molecule is studied by means of ab initio configuration interaction (CI) calculations including the spin-orbit interaction. Potential-energy curves are generated for a large number of electronic states, of which only the X-1 (2)Pi (1/2) ground and X-2 (2)Pi (3/2) and A (2)Sigma (+) excited states have been observed experimentally. Two different methods are compared for the inclusion of spin-orbit effects in the theoretical treatment, a contracted CI which employs a basis of large-scale Lambda -S eigenfunctions to form a rather small matrix representation of the full relativistic Hamiltonian (two-step approach), and a more computationally laborious technique which involves solution of a secular equation of order 250 000 S-2 eigenfunctions of different spin and spatial symmetry to achieve a potentially more evenly balanced description of both relativistic and electron correlation effects (one-step approach). In the present application, it is found that both methods achieve quite good agreement with measured spectroscopic constants for the X-1, X-2, and A states. The simpler of these methods is also employed to predict the radiative lifetimes of the latter two states. The key A (2)Sigma (+)-X (2)Pi transition moment in these calculations is found to vary strongly with internuclear distance and to vanish in the neighborhood of the respective equilibrium distances of both participating states. The computed lifetime for the A, v(')=0 state of 16 mus overestimates the corresponding measured value by a factor of three, but those of higher vibrational states are found to decrease rather sharply with increasing v('), suggesting that only a slight displacement of the theoretical A-X transition moment curve is needed to explain the above discrepancy.