화학공학소재연구정보센터
Journal of Chemical Physics, Vol.116, No.2, 798-813, 2002
The dynamics of the internal phonons tris(quinolin-8-olato) aluminum(III) in crystalline beta-phase
A new approach to the analysis of the internal phonons of tris(quinolin-8-olato) aluminum(III) is presented, which enlightens the role played by the ligands in determining the vibrational properties of the organometallic compound and evidences the importance of the contributions arising from the coupling terms among the three quinolinato fragments. An accurate exam of the normal modes of the meridianal isomer evidences the role of the interactions among the fragments in the vibrational dynamics of the ground state. Due to the special attention paid to the quinolinato fragments, a preliminary investigation on the vibrational properties of 8-hydroxyquinoline, taken as a model fragment, was also performed. The vibrational properties of the polymorph species beta of the organometallic molecule were obtained refining the calculated frequencies, the dipole moment derivative matrix, and the polarizability derivative tensor derived by the hybrid density functional B3LYP/6-31G* comparing with the frequencies and intensities recorded by the infrared and the Raman spectroscopies performed on a polycrystalline sample. One thus obtains the most accurate intramolecular force constants up to date for the meridianal isomer in a crystalline phase.