화학공학소재연구정보센터
Chemical Engineering and Processing, Vol.40, No.6, 511-524, 2001
A computerized and integrated approach for heat exchanger network design in multipurpose batch plants
Significant savings in the utility cost of batch plants can be obtained by heat integration. In this study, an integrated mathematical programming approach is developed for the determination of the cost optimal heat exchanger network for multipurpose batch chemical plants. A single step, interactive computer program (BatcHEN) which is developed for the determination of the campaigns (i.e. the set of products which can be produced simultaneously), the heat exchange areas of all possible heat exchangers in the campaigns and finally the heat exchanger network are all discussed. A matrix search algorithm is used far the determination of the campaigns. Heat exchange areas for the possible heat exchangers are found by solving a nonlinear optimization model with a grid search algorithm. Finally the heat exchanger network optimization is modeled as a mixed integer linear programming problem and then solved by the modeling and optimization software GAMS/XA.