화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.75, No.5, 570-580, 2001
Type-specific separation of animal cells in aqueous two-phase systems using antibody conjugates with temperature-sensitive polymers
A new type of aqueous two-phase system (ATPS) has been developed in which a temperature-sensitive polymer, poly-N-isopropylacrylamide [poly (NIPAM)] was used as a ligand carrier for the specific separation of animal cells. Monoclonal antibodies were modified with itaconic anhydride and copolymerized with N-isopropylacrylamide, and the ligand-conjugated carriers were added to the polyethylene glycol 8000-dextran T500 aqueous two-phase systems. The antibody-polymer conjugates were partitioned to the top phase in the absence or presence of 0.15 M NaCl. When ligand-conjugated carriers were used, more than 80% of the cells were specifically partitioned to the top phase in the presence of NaCl up to 0.1 M. The cells were partitioned almost completely to the bottom phase at 0.1 M NaCl or above, when no anti body-conjugate was added in the ATPS. As a model system, CD34-positive human acute myeloid leukemia cells (KG-1) were specifically separated from human T lymphoma cells (Jurkat) by applying anti-CD34 conjugated with poly-N-isopropylacrylamide in the aqueous two-phase system. By the temperature-induced precipitation of the polymer, about 90% of the antibody-polymer conjugates were recovered from the top phase, which gave approximately 75% cell separating efficiency in the next cycle of reuse.