화학공학소재연구정보센터
Langmuir, Vol.18, No.3, 642-649, 2002
Mechanism of wetting and absorption or water droplets on sized paper: Effects of chemical and physical heterogeneity
The wetting and absorption dynamics of water droplets deposited on hydrophobized paper were studied. The objective was to quantify the effect of chemical and physical heterogeneity of a porous surface on its wetting and absorption behavior. Wetting and absorption rates were calculated from the contact angle, volume, and contact line of the droplets on paper. Absorption started only after the drop had wetted the surface to a certain extent. There was a time delay before absorption occurred. By the end of this delay, a pseudoequilibrium contact angle was reached, a metastable contact angle function of chemical composition of the surface. Wetting on a partially hydrophobized porous surface follows a power law model with wetting rates slower than in hydrodynamic wetting by a factor H, a function of surface roughness. Surface roughness also affects the pseudoequilibrium contact angle, as by entrapping air, it renders the surface more hydrophobic. The wetting dynamics was found to be independent of the chemical heterogeneity of the surface.