화학공학소재연구정보센터
HWAHAK KONGHAK, Vol.31, No.1, 28-35, February, 1993
AUC(Ammonium Uranyl Carbonate) 열분해 반응
Thermal Decomposition Reaction of AUC(Ammonium Uranyl Carbonate)
초록
AUC[Ammonium Uranyl Carbonate, (NH4)4UO2(CO3)3]의 열분해 실험이 열 중량분석 및 시차 열분석 장치를 사용하여 질소, 탄산가스 분위기에서 수행되었다. 특히, 환원성 분위기에 관한 연구를 위해 수소 농도를 5%에서 100%까지 변화시켰다. 중간체들의 구조를 확인하기 위해 X-ray가 사용되었다. AUC는 300℃이하에서 CO2, NH3와 H2O를 방출시키면서 사용된 분위기에 관계없이 무정형의 UO3로 열분해되었으며 온도를 더 증가시키면 공통적으로 무정형 UO3로부터 α-UO3, α-UO3O8상을 거치게 되면 수소 분위기의 경우 UO2까지 환원되었다. 분위기 가스에 따른 중간체 생성조건(반응온도, 반응열, 열분해후 잔류량)들이 제시되었고, 또한 분위기 가스가 중간체 생성조건에 미치는 영향이 검토되었다.
The thermal decomposition of AUC[Ammonium Uranyl Carbonate(NH4)4UO2(CO3)3] has been carried out by using TG(Thermo-Gravimetric Analysis) and DTA(Differential Thermal Analysis)in N2, CO2, and H2 atmospheres, respectively. For studying the AUC thermal decomposition in reducing atmospheres hydrogen concentration was varied from 5 to 100%. Various intermediate phases produced from AUC decom-position with different atmospheres were confirmed by X-ray analysis. With release of CO2, NH3, and H2O, AUC was decomposed to amorphous UO3 up to 300℃. On further heating, the amorphous UO3 was transform-ed to α-U3O8 via α-UO3 regardless of applied atmospheres. α-U3O8 was further reduced to UO2 only in a hydrogen atmosphere. Formation temperature of intermediates, heat of reaction and residual amounts remai-ned in decomposed amorphous UO3, etc. were presented. Also, effects of applied atmospheres on these para-meters were discussed.
  1. Assmann H, Becker M, Trans. Am. Nucl. Soc., 31, 147 (1979)
  2. Assmann H, Doerr W, "Ceramic Powders," edited by P. Vincenzini, Elsevier Scientific Pub. Co., p. 707 (1983)
  3. Choi CS, Park JH, Kim EH, Shin HS, Chang IS, J. Nucl. Mater., 153, 148 (1988) 
  4. Struart WI, Whately TL, J. Inorg. Nucl. Chem., 31, 1639 (1969) 
  5. Sato T, Shiota S, J. Thermal. Anal., 30, 107 (1985) 
  6. Haelldahl L, Nygren M, J. Nucl. Mater., 138, 99 (1986) 
  7. Blazek A, "Thermal Analysis," Van Nostrand Reinhold Co. (1972)
  8. 장인순, 박진호, 김응호, "핵연료 개발," KAERI/RR-1005/90, 과학 기술처 (1991)
  9. Woo MS, Kim EH, Park JJ, Park JH, Chang IS, Proceedings of Korea Nuclear Society, Spring Meeting, Tae-Jon, May, 393 (1991)
  10. Sato T, Ozawa F, Shiota S, Thermochim. Acta, 88, 313 (1985) 
  11. Cordfunke EHP, vanderGiessen AA, J. Inorg. Nucl. Chem., 25, 553 (1963) 
  12. Hoekstra HR, Siegel S, Proceeding of the 2nd U.N. Conference on the Peaceful Uses of Atomic Energy, Geneva, 28, 231 (1958)
  13. Kim EH, Choi CS, Park JH, Unpublished Work
  14. VosecekM, Thermochim. Acta, 122, 261 (1987) 
  15. Notz KJ, Huntington CW, Burkhardt W, Ind. Eng. Chem. Process Des. Dev., 1, 213 (1962) 
  16. ElFeKey SA, Khilla MA, Rofail NH, Radiochim. Acta, 37, 153 (1984)
  17. Cordfunke EHP, Westrum EF, Thermochim. Acta, 124, 285 (1988) 
  18. Criado JM, Gonzalez M, Macias M, Thermochim. Acta, 133, 31 (1987)
  19. Haelldahl L, Nygren M, Thermochim. Acta, 95, 389 (1985) 
  20. Cordfunke EHP, "The Chemistry of Uranium," Elsevier Pub. Co. (1969)
  21. Kim EH, Choi CS, Park JH, Unpublished Work
  22. Olander DR, Dooley DF, J. Nucl. Mater., 237 (1986) 
  23. Abrefah J, Dooley DF, Olander DR, J. Phys. Chem., 94, 1937 (1990) 
  24. LePage AH, Fane AG, J. Inorg. Nucl. Chem., 36, 87 (1974)