화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.163, No.2, 493-499, 1994
SOLUBILIZATION AND SEPARATION OF P-TERT-BUTYLPHENOL USING POLYELECTROLYTE SURFACTANT COMPLEXES IN COLLOID-ENHANCED ULTRAFILTRATION
Water-soluble polyelectrolyte/surfactant complexes, involving oppositely charged species, can form at quite low thermodynamic activities of the surfactant. This fact can be exploited in colloid-enhanced ultrafiltration separations, where both molecular organic pollutants and toxic ions are to be removed from contaminated aqueous streams. Investigations have been made of (a) the solubilization and ultrafiltration of solutions of organic solutes in polymer/surfactant solutions, for comparison with studies of micellar surfactant solutions in the absence of added polymers; (b) the penetration of surfactant through the membrane (leakage of monomer) in dialysis and ultrafiltration experiments, and (c) the utility of polyelectrolytes as ''scavengers'' for surfactant species that enter the permeate or filtrate in colloid-enhanced ultrafiltration separations. The polyelectrolyte chosen for the studies is sodium poly(styrenesulfonate) and the surfactant is cetylpyridinium chloride (hexadecylpyridinium chloride). A detailed study has been made of the solubilization and separation of p-tert-butylphenol in aqueous mixtures of sodium poly(styrenesulfonate) and cetylpyridinium chloride, at polyelectrolyte to surfactant mole ratios of two to one and three to one. (C) 1994 Academic Press, Inc.