IEEE Transactions on Automatic Control, Vol.45, No.7, 1312-1324, 2000
Reduced-order model feedback control design: Numerical implementation in a thin shell model
Reduced-order models employing the Lagrange and popular proper orthogonal decomposition (POD) reduced-basis methods in numerical approximation and feedback control of systems are presented and numerically tested. The system under consideration is a thin cylindrical shell with surface-mounted piezoceramic actuators. Donnell-Mushtari equations, modified to include Kelvin-Voigt damping, are used to model the system dynamics. Basis functions constructed from Fourier polynomials tensored with cubic splines are employed in the Galerkin expansion of the full-order model. Reduced-basis elements are then formed from full order approximations of the exogenously excited shell taken at different time instances. Numerical examples illustrating the features of the reduced-basis methods are presented. As a first step toward investigating the behavior of the methods when implemented in physical systems, the use of reduced-order model feedback control gains in the full order model is considered and numerical examples are presented.
Keywords:LQR feedback control;proper orthogonal decomposition;reduced-basis computational methods;thin shell dynamics